Atomically dispersed trimetallic oxygen electrocatalysts for advancing rechargeable zinc-air battery
Zhixiong Zheng , Lele Wang , Chanez Maouche , Guangbo Chen , Xiafang Tao , Hongbo Ju , Yazhou Zhou
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (3) : 44
Atomically dispersed trimetallic oxygen electrocatalysts for advancing rechargeable zinc-air battery
Developing efficient non-precious metal catalysts for oxygen electrocatalysis is crucial for advancing renewable energy storage systems such as rechargeable Zn-air batteries. Nitrogen-doped carbon (M-N-C) materials with atomically dispersed metal sites, particularly Fe-N-C, exhibit remarkable activity for the oxygen reduction reaction (ORR); however, their performance in the oxygen evolution reaction (OER) remains unsatisfactory. In this work, we present the fabrication of Fe, Co, and Ni trimetallic single-atom catalysts, which exhibit outstanding bifunctional catalytic performance. Using ZIF-8 and phytic acid as chelating agents, we achieved uniform dispersion of Fe, Co, and Ni atoms within a porous carbon matrix, preventing metal agglomeration and enhancing catalytic performance. The Fe30Co30Ni30-phosphorus and nitrogen doped carbon (PNC) catalyst, after optimization, achieved a half-wave potential of 0.85 V for ORR and an OER overpotential of 310 mV at 10 mA·cm-2, outperforming many state-of-the-art non-precious metal catalysts. When applied in a Zn-air battery, it achieved a peak power density of
Atomically dispersed metal sites / oxygen evolution / Zn-air battery / oxygen reduction
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
/
| 〈 |
|
〉 |