Electrosynthesis reactions with divided cells: unlocking potentials in organic synthesis

Maria F. A. Magalhães , Guilherme B. Simoso , Eliakin Sato de Borba , Timothy John Brocksom , Guilherme M. Martins , Kleber T. de Oliveira

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (3) : 41

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (3) :41 DOI: 10.20517/cs.2024.177
review-article

Electrosynthesis reactions with divided cells: unlocking potentials in organic synthesis

Author information +
History +
PDF

Abstract

Electrosynthesis reactions have become an important field of study due to the increasing demand for sustainable and environmentally friendly chemical processes. Using a divided cell in electrosynthesis has shown promising results in selectivity, efficiency, and scalability. In this review, we discuss the principles and advantages of using divided cells in electrosynthesis reactions, focusing on their application in producing organic compounds. We also consider several factors that influence the performance of divided cells, such as the choice of electrode materials, membrane type, and operating conditions. Furthermore, we evaluate the challenges and limitations associated with divided cell electrosynthesis, including the need for high current densities and the management of gas evolution.

Keywords

Organic synthesis / electrochemistry / electrosynthesis / divided cell / electrolysis

Cite this article

Download citation ▾
Maria F. A. Magalhães, Guilherme B. Simoso, Eliakin Sato de Borba, Timothy John Brocksom, Guilherme M. Martins, Kleber T. de Oliveira. Electrosynthesis reactions with divided cells: unlocking potentials in organic synthesis. Chemical Synthesis, 2025, 5(3): 41 DOI:10.20517/cs.2024.177

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yuan Y.Is electrosynthesis always green and advantageous compared to traditional methods?.Nat Commun2020;11:802 PMCID:PMC7005282

[2]

Zhu C,Meyer TH,Ackermann L.Organic electrochemistry: molecular syntheses with potential.ACS Cent Sci2021;7:415-31 PMCID:PMC8006177

[3]

Cabana J,Crabtree GW.NGenE 2021: electrochemistry is everywhere.ACS Energy Lett2022;7:368-74

[4]

Kawamata Y.Electrosynthesis: sustainability is not enough.Joule2020;4:701-4

[5]

Petersen HA,O’Sullivan SJ.Electrochemical methods for materials recycling.Mater Adv2021;2:1113-38

[6]

Horn EJ,Baran PS.Synthetic organic electrochemistry: an enabling and innately sustainable method.ACS Cent Sci2016;2:302-8 PMCID:PMC4882743

[7]

Möhle S,Rodrigo E,Wiebe A.Modern electrochemical aspects for the synthesis of value-added organic products.Angew Chem Int Ed Engl2018;57:6018-41 PMCID:PMC6001547

[8]

Liu C,Zhou W.Selectivity origin of organic electrosynthesis controlled by electrode materials: a case study on pinacols.ACS Catal2021;11:8958-67

[9]

Hanssen BL,Wong DK.Recent strategies to minimise fouling in electrochemical detection systems.Rev Anal Chem2016;35:1-28

[10]

Alkhadra MA,Suss ME.Electrochemical methods for water purification, ion separations, and energy conversion.Chem Rev2022;122:13547-635 PMCID:PMC9413246

[11]

Ahoutou Y,Issa M.Electrochemical cells and storage technologies to increase renewable energy share in cold climate conditions - a critical assessment.Energies2022;15:1579

[12]

Krivik P.Electrochemical energy storage. In: Zobaa A, editor. Energy storage - technologies and applications. InTech; 2013.

[13]

Yan M,Baran PS.Synthetic organic electrochemistry: calling all engineers.Angew Chem Int Ed Engl2018;57:4149-55 PMCID:PMC5823775

[14]

Paidar M,Bouzek K.Membrane electrolysis - history, current status and perspective.Electrochim Acta2016;209:737-56

[15]

Lodh J,Sun H,Schöfberger W.Electrochemical organic reactions: a tutorial review.Front Chem2022;10:956502 PMCID:PMC9871948

[16]

Hilt G.Basic strategies and types of applications in organic electrochemistry.ChemElectroChem2020;7:395-405

[17]

Leow WR,Ozden A.Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density.Science2020;368:1228-33

[18]

Marken F,Bull SD.Recent advances in paired electrosynthesis.Chem Rec2021;21:2585-600

[19]

Sherbo RS,Chiykowski VA,Berlinguette CP.Complete electron economy by pairing electrolysis with hydrogenation.Nat Catal2018;1:501-7

[20]

Sherbo RS,Brown CM.Efficient electrocatalytic hydrogenation with a palladium membrane reactor.J Am Chem Soc2019;141:7815-21

[21]

Llorente MJ,Kubiak CP.Paired electrolysis in the simultaneous production of synthetic intermediates and substrates.J Am Chem Soc2016;138:15110-3

[22]

Wu T,Daugherty MC.Paired electrochemical reactions and the on-site generation of a chemical reagent.Angew Chem Int Ed Engl2019;58:3562-5

[23]

Meyer TH,Tian C.Powering the future: how can electrochemistry make a difference in organic synthesis?.Chem2020;6:2484-96

[24]

Reidell AC,LeBarron CT,Hosseini S.Modified working electrodes for organic electrosynthesis.ACS Org Inorg Au2024;4:579-603 PMCID:PMC11621959

[25]

Gombos LG,Waldvogel SR.Dual roles of supporting electrolytes in organic electrosynthesis.ChemElectroChem2024;11:e202300730

[26]

Kishioka S.Evaluation of formal redox potential from Nernstian plots using higher-order derivative spectra with no background correction.J Electroanal Chem2023;930:117151

[27]

Nutting JE,Stamoulis AG,Stahl SS.“How should I think about voltage? What is overpotential?”: Establishing an organic chemistry intuition for electrochemistry.J Org Chem2021;86:15875-85 PMCID:PMC8604791

[28]

Dutta N,Chawla G.A guideline to determine faradaic efficiency in electrochemical CO2 reduction.ACS Energy Lett2024;9:323-8

[29]

Medici F,Andolina S.Recent advances in enantioselective catalytic electrochemical organic transformations.Catalysts2023;13:944

[30]

Okada Y.Redox-tag processes: intramolecular electron transfer and its broad relationship to redox reactions in general.Chem Rev2018;118:4592-630

[31]

Yoshida J,Suzuki S,Yamamoto A.Direct oxidative carbon−carbon bond formation using the “cation pool” method. 1. Generation of iminium cation pools and their reaction with carbon nucleophiles.J Am Chem Soc1999;121:9546-9

[32]

Shimizu A,Mishima S.Generation, characterization, and reactions of thionium ions based on the indirect cation pool method.Bull Chem Soc Jpn2016;89:61-6

[33]

Suga S,Yamamoto A.Electrooxidative generation and accumulation of alkoxycarbenium ions and their reactions with carbon nucleophiles.J Am Chem Soc2000;122:10244-5

[34]

Suga S,Yoshida J.Cationic three-component coupling involving an optically active enamine derivative. from time integration to space integration of reactions.Chem Lett2010;39:404-6

[35]

Sezer N,Fesli U.A comprehensive review of the state-of-the-art of proton exchange membrane water electrolysis.Mater Sci Energy Technol2025;8:44-65

[36]

Xing J,Best W.Long-term durability test of highly efficient membrane electrode assemblies for anion exchange membrane seawater electrolyzers.J Power Sources2023;558:232564

[37]

Brachi M,Beaver K.Advanced electroanalysis for electrosynthesis.ACS Org Inorg Au2024;4:141-87 PMCID:PMC10995937

[38]

Kyriacou D.Modern electroorganic chemistry. Springer Berlin Heidelberg; 1994.

[39]

Sharma S.Electro-organic reactions: direct and indirect electrolysis.Orient J Chem2024;40:321-32

[40]

Stuart DR.The catalytic cross-coupling of unactivated arenes.Science2007;316:1172-5

[41]

Dohi T,Morimoto K,Kita Y.Oxidative cross-coupling of arenes induced by single-electron transfer leading to biaryls by use of organoiodine(III) oxidants.Angew Chem Int Ed Engl2008;47:1301-4

[42]

Morofuji T,Yoshida J.Metal- and chemical-oxidant-free C-H/C-H cross-coupling of aromatic compounds: the use of radical-cation pools.Angew Chem Int Ed Engl2012;51:7259-62

[43]

Fritz HP.Elektrochemische synthesen, XVIII: Reaktionen des Naphthalinradikalkations mit Nucleophilen.Chem Ber1981;114:3643-54

[44]

Chupakhin ON.Recent advances in the field of nucleophilic aromatic substitution of hydrogen.Tetrahedron Lett2016;57:2665-72

[45]

Gallardo I.Electrochemical C–H functionalization of arenes and heteroarenes. In: Charushin V, Chupakhin O, editers. Metal free C–H functionalization of aromatics. Topics in Heterocyclic Chemistry. Springer, Cham; 2013. pp. 241-75.

[46]

Chupakhin ON,Charushin VN.Atom- and step-economical nucleophilic arylation of azaaromatics via electrochemical oxidative cross C–C coupling reactions.Green Chem2017;19:2931-5

[47]

Sun GQ,Zhang W.Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations.Nature2023;615:67-72 PMCID:PMC10036166

[48]

Zhong G,He L.Regioselectivity of N-heteroarene electrocarboxylations: divided vs. undivided cell.Chem Synth2023;3:18

[49]

Langlois BR,Roidot N.Trifluoromethylation of aromatic compounds with sodium trifluoromethanesulfinate under oxidative conditions.Tetrahedron Lett1991;32:7525-8

[50]

Ji Y,Baxter RD.Innate C-H trifluoromethylation of heterocycles.Proc Natl Acad Sci U S A2011;108:14411-5 PMCID:PMC3167544

[51]

O’Brien AG,Inokuma Y,Baran PS.Radical C-H functionalization of heteroarenes under electrochemical control.Angew Chem Int Ed Engl2014;53:11868-71 PMCID:PMC4214156

[52]

Tommasino JB,Médebielle M,Langlois BR.Trifluoromethylation reactions with potassium trifluoromethanesulfinate under electrochemical oxidation.Synlett2002;10:1697-9

[53]

Lu MC,Liu T,Jiang ZY.Discovery of 2-oxy-2-phenylacetic acid substituted naphthalene sulfonamide derivatives as potent KEAP1-NRF2 protein-protein interaction inhibitors for inflammatory conditions.Eur J Med Chem2020;207:112734

[54]

Xu F,Wen Q.Synthesis and biological evaluation of N-(4-hydroxy-3-mercaptonaphthalen-1-yl)amides as inhibitors of angiogenesis and tumor growth.Eur J Med Chem2013;64:377-88

[55]

Xu F,Wang X.Discovery of N-(3-((7H-purin-6-yl)thio)-4-hydroxynaphthalen-1-yl)-sulfonamide derivatives as novel protein kinase and angiogenesis inhibitors for the treatment of cancer: synthesis and biological evaluation. Part III.Bioorg Med Chem2014;22:1487-95

[56]

Röhrig UF,Grosdidier A.Rational design of indoleamine 2,3-dioxygenase inhibitors.J Med Chem2010;53:1172-89

[57]

Cee VJ,Romero K.Pyridyl-pyrimidine benzimidazole derivatives as potent, selective, and orally bioavailable inhibitors of Tie-2 kinase.Bioorg Med Chem Lett2009;19:424-7

[58]

Kise N,Sakurai T.Electroreductive coupling of phthalimides with α,β-unsaturated carbonyl compounds and subsequent acid-catalyzed rearrangement to 4-aminonaphthalen-1-ols: density functional theory study of the acid-catalyzed rearrangement of ketene silyl acetals.J Org Chem2021;86:18232-46

[59]

Kise N,Sakurai T.Electroreductive coupling of phthalimides with alpha,beta-unsaturated esters: unusual rearrangement of resulting silyl ketene acetals.Org Lett2009;11:4902-5

[60]

Amines: synthesis, properties and applications By S. A. Lawrence. Cambridge University Press: Cambridge. 2004. 371 + x pp. £100/$180. ISBN 0-521-78284-8.Org Process Res Dev2005;9:1016

[61]

Wang S,Sugamori KS.Primary aromatic amines and cancer: novel mechanistic insights using 4-aminobiphenyl as a model carcinogen.Pharmacol Ther2019;200:179-89

[62]

Wienhöfer G,Boddien A.General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base.J Am Chem Soc2011;133:12875-9

[63]

Morofuji T,Yoshida J.Electrochemical C-H amination: synthesis of aromatic primary amines via N-arylpyridinium ions.J Am Chem Soc2013;135:5000-3

[64]

Brotzel F,Singer T,Mayr H.Nucleophilicities and carbon basicities of pyridines.Chemistry2007;13:336-45

[65]

Li Y,Yamagishi T.Electrochemical synthesis of pyridinium-conjugated assembly based on nucleophilic substitution of pyrene/perylene π-radical cation.Electrochemistry2004;72:171-4

[66]

Sharma PC,Sharma A,Pathak DP.Medicinal significance of benzothiazole scaffold: an insight view.J Enzyme Inhib Med Chem2013;28:240-66

[67]

Yeh V.Oxazoles. Comprehensive heterocyclic chemistry III. Elsevier; 2008. pp. 487-543.

[68]

Morofuji T,Yoshida J.Electrochemical intramolecular C-H amination: synthesis of benzoxazoles and benzothiazoles.Chemistry2015;21:3211-4

[69]

Zhang G,Yi H.External oxidant-free oxidative cross-coupling: a photoredox cobalt-catalyzed aromatic C-H thiolation for constructing C-S bonds.J Am Chem Soc2015;137:9273-80

[70]

Guru MM,Punniyamurthy T.Copper(II)-catalyzed conversion of bisaryloxime ethers to 2-arylbenzoxazoles via C-H functionalization/C-N/C-O bonds formation.Org Lett2011;13:1194-7

[71]

Wesenberg LJ,Shimizu A,Waldvogel SR.New approach to 1,4-benzoxazin-3-ones by electrochemical C-H amination.Chemistry2017;23:12096-9

[72]

Brahma K,Chowdhury C.A palladium-catalyzed facile and general method for the stereoselective synthesis of (E)-3-arylidene-3,4-dihydro-2H-1,4-benzoxazines and their naphthoxazine analogues.Tetrahedron2014;70:5863-71

[73]

Kononov AI,Morozov VI.Replacing sulfuric acid with water in electrochemical metal-free mild aromatic C–H amidation: a direct route to N-phenylamides.Org Chem Front2024;11:5820-30

[74]

Fu Y,Sun M.Direct electrochemical ritter-type amination of electron-deficient arenes.Eur J Org Chem2023;26:e202300553

[75]

Moragas T,Martin R.Metal-catalyzed reductive coupling reactions of organic halides with carbonyl-type compounds.Chemistry2014;20:8242-58

[76]

Cheng LJ.Copper-catalyzed carbonylative coupling of alkyl halides.Acc Chem Res2021;54:2261-74

[77]

Knappke CE.35 years of palladium-catalyzed cross-coupling with Grignard reagents: how far have we come?.Chem Soc Rev2011;40:4948-62

[78]

Dong CP,Taniguchi T.Synthesis of aryl iodides from arylhydrazines and iodine.ACS Omega2018;3:9814-21 PMCID:PMC6645010

[79]

Ilangovan A.Direct amidation of 2’-aminoacetophenones using I2-TBHP: a unimolecular domino approach toward isatin and iodoisatin.J Org Chem2014;79:4984-91

[80]

Dahiya A,Chakraborty N,Patel BK.Updates on hypervalent-iodine reagents: metal-free functionalisation of alkenes, alkynes and heterocycles.Org Biomol Chem2022;20:2005-27

[81]

Sano K,Kochi T.Palladium-catalyzed C−H iodination of N-(8-quinolinyl)benzamide derivatives under electrochemical and non-electrochemical conditions.Asian J Org Chem2018;7:1311-4

[82]

Möckel R,Winterling E,Faber TM.Electrochemical synthesis of aryl iodides by anodic iododesilylation.Angew Chem Int Ed Engl2018;57:442-5

[83]

Weissman SA.Design of experiments (DoE) and process optimization. a review of recent publications.Org Process Res Dev2015;19:1605-33

[84]

Murray PM,Benhamou L,Tabor AB.The application of design of experiments (DoE) reaction optimisation and solvent selection in the development of new synthetic chemistry.Org Biomol Chem2016;14:2373-84

[85]

Gensch T.Synthetic chemistry. The straight dope on the scope of chemical reactions.Science2016;352:294-5

[86]

Kataoka K,Midorikawa K,Yoshida J.Practical electrochemical iodination of aromatic compounds.Org Process Res Dev2008;12:1130-6

[87]

Midorikawa K,Yoshida J.Selective monoiodination of aromatic compounds with electrochemically generated I+ using micromixing.Chem Commun2006;:3794-6

[88]

Yan L,Yang P.Electrochemically generated iodine cations from a glassy carbon electrode for highly selective iodination of anisole.Trans Tianjin Univ2022;28:433-9

[89]

Shirakawa E,Itoh K.Cross-coupling of aryl Grignard reagents with aryl iodides and bromides through SRN1 pathway.Angew Chem Int Ed Engl2012;51:218-21

[90]

Schilz M.A guide to Sonogashira cross-coupling reactions: the influence of substituents in aryl bromides, acetylenes, and phosphines.J Org Chem2012;77:2798-807

[91]

Yang QL,Wang TL.Palladium-catalyzed electrochemical C-H bromination using NH4Br as the brominating reagent.Org Lett2019;21:2645-9

[92]

Zhang P,Chen X.Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source.Angew Chem Int Ed Engl2019;58:9155-9 PMCID:PMC6617801

[93]

Sbei N,Ahmed N.Green chemistry: electrochemical organic transformations via paired electrolysis.ACS Sustainable Chem Eng2021;9:6148-69

[94]

Chen H,Dong K.Parallel paired photoelectrochemical bromination of alkylarenes with electrochemical pinacol coupling.J Org Chem2024;89:2550-5

[95]

Fry AJ.Electrochemical reduction of stereoisomeric geminal dihalonorbornanes.J Am Chem Soc1972;94:8475-84

[96]

Ikeda S,Nishiguchi I.A novel synthetic method for penicillanic acid derivatives by electroreduction.Chem Pharm Bull1988;36:1976-81

[97]

Kargin YM,Yanilkin VV.Electrochemical reduction of 1,1-dihalo-2,2-disubstituted cyclopropanes.Russ Chem Bull1992;41:1572-9

[98]

Walborsky HM.The nature of electron transfer from metal surfaces to the carbon-halogen bond.J Am Chem Soc1993;115:6406-8

[99]

Webb JL,Walborsky HM.Cyclopropanes. XXVI. Electrolytic reduction of optically active 1-halo-1-methyl-2,2-diphenylcyclopropanes.J Am Chem Soc1970;92:2042-51

[100]

Jaouannet S,Tallec A.Electroreduction of optically active 1-bromo 1-carbomethoxy-2,2-diphenylcyclopropane: Factors influencing stereoselectivity.J Electroanal Chem1980;111:397-400

[101]

Gütz C,Bucher C,Waldvogel SR.Development and scale-up of the electrochemical dehalogenation for the synthesis of a key intermediate for NS5A inhibitors.Org Process Res Dev2015;19:1428-33

[102]

Fensterbank L,Malacria M.10.07 - C–C bond formation (Part 1) by addition reactions: through carbometallation catalyzed by group 8-11 metals. In: Comprehensive organometallic chemistry III. Elsevier; 2007. pp. 299-368.

[103]

Littke AF.Palladium-catalyzed coupling reactions of aryl chlorides.Angew Chem Int Ed2002;41:4176-211

[104]

Konishi M,Sano K,Kakiuchi F.Palladium-catalyzed ortho-selective C-H chlorination of benzamide derivatives under anodic oxidation conditions.J Org Chem2017;82:8716-24

[105]

Ashikari Y,Yoshida J.Integrated electrochemical-chemical oxidation mediated by alkoxysulfonium ions.J Am Chem Soc2011;133:11840-3

[106]

Phan TB,Kobayashi S,Mayr H.Can one predict changes from SN1 to SN2 mechanisms?.J Am Chem Soc2009;131:11392-401

[107]

Adhami W,Len C.A review of recent advances in the production of furfural in batch system.Mol Catal2023;545:113178

[108]

Werpy T. Top value added chemicals from biomass: Volume I - Results of screening for potential candidates from sugars and synthesis gas. 2004. https://www.nrel.gov/docs/fy04osti/35523.pdf. (accessed on 24 Mar 2025)

[109]

Cao Y,Delparish A,Noёl T.A divergent paired electrochemical process for the conversion of furfural using a divided-cell flow microreactor.ChemSusChem2021;14:590-4 PMCID:PMC7898665

[110]

Wu H,Liu H.An electrocatalytic route for transformation of biomass-derived furfural into 5-hydroxy-2(5H)-furanone.Chem Sci2019;10:4692-8 PMCID:PMC6495687

[111]

Cao Y.Efficient electrocatalytic reduction of furfural to furfuryl alcohol in a microchannel flow reactor.Org Process Res Dev2019;23:403-8 PMCID:PMC6423986

[112]

Wu Y,Wang C,Zhang B.Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd-P cathode.Angew Chem Int Ed Engl2020;59:21170-5

[113]

Kakiuchi F.Transition-metal-catalyzed carbon-carbon bond formation via carbon-hydrogen bond cleavage.Synthesis2008;2008:3013-39

[114]

Saito F,Kochi T.Palladium-catalyzed regioselective homocoupling of arenes using anodic oxidation: formal electrolysis of aromatic carbon–hydrogen bonds.Organometallics2014;33:6704-7

[115]

Hull KL,Sanford MS.Highly regioselective catalytic oxidative coupling reactions: synthetic and mechanistic investigations.J Am Chem Soc2006;128:14047-9

[116]

Zhu Y,Tang W.Palladium-catalyzed cross-couplings in the synthesis of agrochemicals.Adv Agrochem2022;1:125-38

[117]

Ma C,Li YQ.Palladium-catalyzed C-H activation/C-C cross-coupling reactions via electrochemistry.Chem Commun2017;53:12189-92

[118]

Chen X,Yu JQ.Palladium-catalyzed alkylation of sp2 and sp3 C-H bonds with methylboroxine and alkylboronic acids: two distinct C-H activation pathways.J Am Chem Soc2006;128:12634-5

[119]

Engle KM,Wasa M.Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions.Acc Chem Res2012;45:788-802 PMCID:PMC3334399

[120]

Li YQ,Fang P,Zhang D.Palladium-catalyzed C(sp2)-H acetoxylation via electrochemical oxidation.Org Lett2017;19:2905-8

[121]

Dick AR,Sanford MS.A highly selective catalytic method for the oxidative functionalization of C-H bonds.J Am Chem Soc2004;126:2300-1

[122]

Li LJ,Lam CM,Hu LM.Aromatic C-H bond functionalization induced by electrochemically in situ generated tris(p-bromophenyl)aminium radical cation: cationic chain reactions of electron-rich aromatics with enamides.J Org Chem2015;80:11021-30

[123]

See YY,Aihara Y.Scalable C-H oxidation with copper: synthesis of polyoxypregnanes.J Am Chem Soc2015;137:13776-9 PMCID:PMC5287264

[124]

Yang QL,Ma C,Zhang XJ.Palladium-catalyzed C(sp3)-H oxygenation via electrochemical oxidation.J Am Chem Soc2017;139:3293-8

[125]

Robinson SG,Alektiar SN,Sigman MS.Electrochemical Ruthenium-catalyzed C-H hydroxylation of amine derivatives in aqueous acid.Org Lett2020;22:7060-3

[126]

Mack JBC,Du Bois J.Ruthenium-catalyzed C-H hydroxylation in aqueous acid enables selective functionalization of amine derivatives.J Am Chem Soc2017;139:9503-6

[127]

Rebsdat S. Ethylene Oxide. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley; 2001. https://www.ugr.es/~tep028/pqi/descargas/Industria%20quimica%20organica/tema_5/oxido_etileno_a10_117.pdf. (accessed on 24 Mar 2025)

[128]

Rafiee M,Hruszkewycz DP.N-hydroxyphthalimide-mediated electrochemical iodination of methylarenes and comparison to electron-transfer-initiated C-H functionalization.J Am Chem Soc2018;140:22-5 PMCID:PMC5831155

[129]

Xiang H,Qian W.Electroreductively induced radicals for organic synthesis.Molecules2023;28:857 PMCID:PMC9866059

[130]

Xu H,Zhang H.Reductive cleavage of inert aryl C-O bonds to produce arenes.Chem Commun2015;51:12212-5

[131]

Chernowsky CP,Wickens ZK.Electrochemical activation of diverse conventional photoredox catalysts induces potent photoreductant activity.Angew Chem Int Ed Engl2021;60:21418-25 PMCID:PMC8440429

[132]

Fokin I.Chemoselective electrochemical hydrogenation of ketones and aldehydes with a well-defined base-metal catalyst.Chemistry2020;26:14137-43 PMCID:PMC7702145

[133]

Hoque MA,Stahl SS.Synthetic dioxygenase reactivity by pairing electrochemical oxygen reduction and water oxidation.Science2024;383:173-8 PMCID:PMC10902909

[134]

Adachi T,Shirai O.Recent progress in applications of enzymatic bioelectrocatalysis.Catalysts2020;10:1413

[135]

Adachi T,Shirai O.Direct electron transfer-type bioelectrocatalysis of redox enzymes at nanostructured electrodes.Catalysts2020;10:236

[136]

Francke R.Mediated electron transfer in electrosynthesis: concepts, applications, and recent influences from photoredox catalysis. In: Inagi S, editor. Sustainable and functional redox chemistry. The Royal Society of Chemistry; 2022. pp. 119-53.

[137]

Shi L,Reguera G.Extracellular electron transfer mechanisms between microorganisms and minerals.Nat Rev Microbiol2016;14:651-62

[138]

Dong H,Li H,Xia R.Electron transfer from Geobacter sulfurreducens to mixed methanogens improved methane production with feedstock gases of H2 and CO2.Bioresour Technol2022;347:126680

[139]

Freguia S,Harnisch F.Bioelectrochemical systems: microbial versus enzymatic catalysis.Electrochim Acta2012;82:165-74

[140]

Radhika D,Kasai D,Peera S.Microbial electrolysis cell as a diverse technology: overview of prospective applications, advancements, and challenges.Energies2022;15:2611

[141]

Bensaid S,Saracco G.Development of a photosynthetic microbial electrochemical cell (PMEC) reactor coupled with dark fermentation of organic wastes: medium term perspectives.Energies2015;8:399-429

[142]

Hassan RYA,Andreescu S.Microbial electrochemical systems: principles, construction and biosensing applications.Sensors2021;21:1279 PMCID:PMC7916843

[143]

Wu R,Zhu Z.Enzymatic electrosynthesis as an emerging electrochemical synthesis platform.Curr Opin Electrochem2020;19:1-7

AI Summary AI Mindmap
PDF

66

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/