Copper-doped TiO2 photocatalyst for advanced oxidation processes: reactive oxygen species generation mechanisms

Naizhen Yu , Collins Nganou , Dongchang Yang , Andrew Carrier , Ken Oakes , Mita Dasog , Xu Zhang

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (3) : 43

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (3) :43 DOI: 10.20517/cs.2024.163
review-article

Copper-doped TiO2 photocatalyst for advanced oxidation processes: reactive oxygen species generation mechanisms

Author information +
History +
PDF

Abstract

Copper-doped anatase TiO2 (Cu/TiO2) has attracted significant attention in various sustainable chemical processes, including water splitting, carbon monoxide oxidation, carbon dioxide reduction, chemical synthesis, and advanced oxidation processes for water treatment. Reactive oxygen species (ROS) are involved in these processes, but a mechanistic understanding of ROS generation on Cu/TiO2 surfaces has not been established. Combining experimental investigation and computational simulation, this work provides unequivocal evidence for superoxide radical anion (O2•-) formation via reduction of the adsorbed oxygen by Cu+ and hydroxyl radical (OH) production by oxidation of lattice oxygen within the bridging Cu-O-Ti structure on Cu/TiO2 surfaces. Under visible light irradiation, the ROS generation rates of Cu/TiO2 are 7.2 times higher for O2•- and 11.2 times higher for OH than those of undoped TiO2. The superior performance of Cu/TiO2 has been demonstrated through its organic dye degradation, bactericidal activity, and biofilm disruption, indicating its wide applicability in water treatment and disinfection. The results and the methodologies will benefit the wide field of heterogeneous redox chemistry.

Keywords

Heterogeneous redox chemistry / sustainable chemistry / organic dye / biofilm / disinfectant / antimicrobial effect

Cite this article

Download citation ▾
Naizhen Yu, Collins Nganou, Dongchang Yang, Andrew Carrier, Ken Oakes, Mita Dasog, Xu Zhang. Copper-doped TiO2 photocatalyst for advanced oxidation processes: reactive oxygen species generation mechanisms. Chemical Synthesis, 2025, 5(3): 43 DOI:10.20517/cs.2024.163

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fujishima A.Electrochemical photolysis of water at a semiconductor electrode.Nature1972;238:37-8

[2]

Zhang H,Lv X,Chang H.Energy-efficient photodegradation of azo dyes with TiO2 nanoparticles based on photoisomerization and alternate UV-visible light.Environ Sci Technol2010;44:1107-11

[3]

Hashimoto K,Sakata T.Temperature-independent electron-transfer: Rhodamine B/oxide semiconductor dye-sensitization system.J Phys Chem1988;92:4272-4

[4]

Basavarajappa PS,Ganganagappa N,Raghu AV.Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis.Int J Hydrogen Energy2020;45:7764-78

[5]

Paola AD,Marcì G,Palmisano L.Transition metal doped TiO2: physical properties and photocatalytic behaviour.Int J Photoenergy2001;3:171-6

[6]

Wang B,Mao SS.Black TiO2 for solar hydrogen conversion.J Materiomics2017;3:96-111

[7]

Zhang K.Surface localization of defects in black TiO2: enhancing photoactivity or reactivity.J Phys Chem Lett2017;8:199-207

[8]

Erdural B,Karakas G.Photocatalytic antibacterial activity of TiO2–SiO2 thin films: the effect of composition on cell adhesion and antibacterial activity.J Photochem Photobiol A Chem2014;283:29-37

[9]

Ya J,Hu F,E L.Preparation and activity evaluation of TiO2/Cu-TiO2 composite catalysts.J Sol Gel Sci Technol2015;73:322-31

[10]

Chen F,Hidaka H.Highly selective deethylation of rhodamine B: adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst.Int J Photoenergy2003;5:209-17

[11]

Liu Z,Zhang Q,Sun H.TiO2-supported single-atom catalysts: synthesis, structure, and application.Chem Res Chin Univ2022;38:1123-38

[12]

Janisch R,Spaldin NA.Transition metal-doped TiO2 and ZnO - present status of the field.J Phys Condens Matter2005;17:R657-89

[13]

Song H,Lou Z,Zhu L.Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting.ACS Sustainable Chem Eng2017;5:8982-7

[14]

Hejazi S,Mazare A.Single-atom-based catalysts for photocatalytic water splitting on TiO2 nanostructures.Catalysts2022;12:905

[15]

Tomboc GM,Jung S,Lee K.Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance in hydrogen/oxygen evolution reaction.Small2022;18:e2105680

[16]

Lee BH,Kim M.Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts.Nat Mater2019;18:620-6

[17]

Wang H,Sun X.High quantum efficiency of hydrogen production from methanol aqueous solution with PtCu-TiO2 photocatalysts.Nat Mater2023;22:619-26

[18]

Fang Y,Zhang H.Dual activation of molecular oxygen and surface lattice oxygen in single atom Cu1/TiO2 catalyst for CO oxidation.Angew Chem Int Ed Engl2022;61:e202212273

[19]

Iyemperumal SK,Bauer J.Quantifying support interactions and reactivity trends of single metal atom catalysts over TiO2.J Phys Chem C2018;122:25274-89

[20]

Qi R,Han Z.High-throughput screening of stable single-atom catalysts in CO2 reduction reactions.ACS Catal2022;12:8269-78

[21]

De S,Ramirez A.Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization.ACS Catal2020;10:14147-85

[22]

Hu G,Jiang D.First principles insight into H2 activation and hydride species on TiO2 surfaces.J Phys Chem C2018;122:20323-8

[23]

Liu P,Qin R.Photochemical route for synthesizing atomically dispersed palladium catalysts.Science2016;352:797-801

[24]

Hu J,Janik MJ.Hydrogen activation and spillover on anatase TiO2-supported Ag single-atom catalysts.J Phys Chem C2022;126:7482-91

[25]

Li D,Miao Y.Accelerating electron-transfer dynamics by TiO2-immobilized reversible single-atom copper for enhanced artificial photosynthesis of urea.Adv Mater2022;34:e2207793

[26]

Guo Y,Zeng B.Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst.Nat Commun2022;13:2648 PMCID:PMC9098498

[27]

Kim SS,Hong SC.The effect of the morphological characteristics of TiO2 supports on the reverse water–gas shift reaction over Pt/TiO2 catalysts.Appl Catal B Environ2012;119-20:100-8

[28]

Chen L,Hoffman AS.Unlocking the catalytic potential of TiO2-supported Pt single atoms for the reverse water-gas shift reaction by altering their chemical environment.JACS Au2021;1:977-86 PMCID:PMC8395703

[29]

Nelson NC,Meira D,Szanyi J.In situ dispersion of palladium on TiO2 during reverse water–gas shift reaction: formation of atomically dispersed palladium.Angew Chem Int Ed Engl2020;132:17810-6

[30]

Astruc D,Aranzaes JR.Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis.Angew Chem Int Ed Engl2005;44:7852-72

[31]

Byrne C,Hermosilla D.Effect of Cu doping on the anatase-to-rutile phase transition in TiO2 photocatalysts: theory and experiments.Appl Catal B Environ2019;246:266-76

[32]

Cheng C,Long R.Water splitting with a single-atom Cu/TiO2 photocatalyst: atomistic origin of high efficiency and proposed enhancement by spin selection.JACS Au2021;1:550-9 PMCID:PMC8395698

[33]

Cao Z,Zuo YY.An optical method for quantitatively determining the surface free energy of micro- and nanoparticles.Anal Chem2019;91:12819-26

[34]

Chen X,Yu PY.Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals.Science2011;331:746-50

[35]

Kim A,Haye B,Sassoye C.Mesoporous TiO2 support materials for Ru-based CO2 methanation catalysts.ACS Appl Nano Mater2019;2:3220-30

[36]

Martell SA,Dasog M.The influence of hydrofluoric acid etching processes on the photocatalytic hydrogen evolution reaction using mesoporous silicon nanoparticles.Faraday Discuss2020;222:176-89

[37]

Kirshenbaum MJ,Dasog M.Electrochemical water oxidation in acidic solution using titanium diboride (TiB2) catalyst.ChemCatChem2019;11:3877-81

[38]

Gelderman K,Donne SW.Flat-band potential of a semiconductor: using the Mott–Schottky equation.J Chem Educ2007;84:685

[39]

Balu S,Chen SW.Rational synthesis of BixFe1-xVO4 heterostructures impregnated sulfur-doped g-C3N4: a visible-light-driven type-II heterojunction photo(electro)catalyst for efficient photodegradation of roxarsone and photoelectrochemical OER reactions.Appl Catal B Environ2022;304:120852

[40]

Kautek W.Photoelectrochemical reactions and formation of inversion layers at n-type MoS2-, MoSe2-, and WSe2-electrodes in aprotic solvents.Ber Bunsenges Phys Chem1980;84:645-53

[41]

Feenstra RM.Tunneling spectroscopy of the GaAs(110) surface.J Vac Sci Technol B1987;5:923-9

[42]

Seger B,Pedersen T.Silicon protected with atomic layer deposited TiO2: conducting versus tunnelling through TiO2.J Mater Chem A2013;1:15089

[43]

Yin M,Kou J.Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/eosin Y/rhodamine B system.Environ Sci Technol2009;43:8361-6

[44]

Jo WK,Tonda S.Hierarchical flower-like NiAl-layered double hydroxide microspheres encapsulated with black Cu-doped TiO2 nanoparticles: highly efficient visible-light-driven composite photocatalysts for environmental remediation.J Hazard Mater2018;357:19-29

[45]

Zhang D,Song L,Mo Y.Role of oxygen active species in the photocatalytic degradation of phenol using polymer sensitized TiO2 under visible light irradiation.J Hazard Mater2009;163:843-7

[46]

Yuan G,Li Y.A modified hestenes and stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations.J Optim Theory Appl2016;168:129-52

[47]

Mato J.Accuracy of the PM6 and PM7 methods on bare and thiolate-protected gold nanoclusters.J Phys Chem A2020;124:2601-15

[48]

Baker J.An algorithm for the location of transition states.J Comput Chem1986;7:385-95

[49]

Li G,Chen L,Gray KA.Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO−TiO2 nanocomposites.J Phys Chem C2008;112:19040-4

[50]

Moniz SJA.Charge transfer and photocatalytic activity in CuO/TiO2 nanoparticle heterojunctions synthesised through a rapid, one-pot, microwave solvothermal route.ChemCatChem2015;7:1659-67

[51]

Bhattacharyya K,Rane V,Tyagi AK.Selective CO2 photoreduction with Cu-doped TiO2 photocatalyst: delineating the crucial role of Cu-oxidation state and oxygen vacancies.J Phys Chem C2021;125:1793-810

[52]

Setvín M,Scheiber P.Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101).Science2013;341:988-91

[53]

Bredow T.Electronic structure of an isolated oxygen vacancy at the TiO2(110) surface.Chem Phys Lett2002;355:417-23

[54]

Pacchioni G.Oxygen vacancy: the invisible agent on oxide surfaces.Chemphyschem2003;4:1041-7

[55]

You M,Sung Y.Synthesis of Cu-doped TiO2 nanorods with various aspect ratios and dopant concentrations.Cryst Growth Des2010;10:983-7

[56]

Kang L,Bing Q.Adsorption and activation of molecular oxygen over atomic copper(I/II) site on ceria.Nat Commun2020;11:4008 PMCID:PMC7419315

[57]

Colón G,Hidalgo M.Cu-doped TiO2 systems with improved photocatalytic activity.Appl Catal B Environ2006;67:41-51

[58]

Takanabe K.Photocatalytic water splitting: quantitative approaches toward photocatalyst by design.ACS Catal2017;7:8006-22

[59]

Choudhury B,Choudhury A.Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles.Int Nano Lett2013;3:52

[60]

Rengifo-Herrera JA.Why five decades of massive research on heterogeneous photocatalysis, especially on TiO2, has not yet driven to water disinfection and detoxification applications? Critical review of drawbacks and challenges.Chem Eng J2023;477:146875

[61]

Kandoth N,Gupta S.Multimodal biofilm inactivation using a photocatalytic bismuth perovskite-TiO2-Ru(II)polypyridyl-based multisite heterojunction.ACS Nano2023;17:10393-406

[62]

Wu T,Zhao J,Serpone N.TiO2-assisted photodegradation of dyes. 9. Photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation.Environ Sci Technol1999;33:1379-87

[63]

Amorelli A,Rowlands CC.Electron paramagnetic resonance study of the effect of temperature upon copper-impregnated titanium dioxide powders.J Chem Soc Faraday Trans 11989;85:4111

[64]

Shi X,Huang L.Copper catalysts in semihydrogenation of acetylene: from single atoms to nanoparticles.ACS Catal2020;10:3495-504

[65]

Zhang Y,Wang H.Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56.Nat Commun2022;13:58 PMCID:PMC8748625

[66]

Zhao Y,Shi R.Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm.Adv Mater2019;31:e1806482

[67]

Zhao Y,Waterhouse GIN.Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation.Adv Mater2017;29:1703828

[68]

Dohshi S,Okuda S.Effect of γ-ray Irradiation on the Wettability of TiO2 single crystals.Top Catal2005;35:327-30

[69]

Pan C,Liu G.CuO/TiO2 nanobelt with oxygen vacancies for visible-light-driven photocatalytic bacterial inactivation.ACS Appl Nano Mater2022;5:10980-90

[70]

Nakamura R.Molecular mechanism of water oxidation reaction at photo-irradiated TiO2 and related metal oxide surfaces.Solid State Phenom2010;162:1-27

[71]

Nosaka Y.Understanding hydroxyl radical (OH) generation processes in photocatalysis.ACS Energy Lett2016;1:356-9

[72]

Kim B,Ohta T.Nucleophilic reactivity of a copper(II)-hydroperoxo complex.Commun Chem2019;2:187

[73]

Nosaka Y.Generation and detection of reactive oxygen species in photocatalysis.Chem Rev2017;117:11302-36

[74]

Nosaka Y,Nosaka AY.Singlet oxygen formation in photocatalytic TiO2 aqueous suspension.Phys Chem Chem Phys2004;6:2917

[75]

Jakimińska A,Macyk W.Photocatalytic transformation of Rhodamine B to Rhodamine-110 - the mechanism revisited.J Photochem Photobiol A Chem2022;433:114176

[76]

Wu T,Zhao J,Serpone N.Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions.J Phys Chem B1998;102:5845-51

[77]

Skjolding LM,Dyhr KS.Assessing the aquatic toxicity and environmental safety of tracer compounds Rhodamine B and Rhodamine WT.Water Res2021;197:117109

[78]

Jańczyk A,Stochel G.Singlet oxygen photogeneration at surface modified titanium dioxide.J Am Chem Soc2006;128:15574-5

[79]

Curry DE,Carrier AJ.Surface interaction of doxorubicin with anatase determines its photodegradation mechanism: insights into removal of waterborne pharmaceuticals by TiO2 nanoparticles.Environ Sci Nano2018;5:1027-35

[80]

Loeb SK,Brame JA.The technology horizon for photocatalytic water treatment: sunrise or sunset?.Environ Sci Technol2019;53:2937-47

AI Summary AI Mindmap
PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/