Recent progress in electrochemical synthesis of urea through C-N coupling reactions

Haoxiang Cai , Junyang Ding , Tong Hou , Tianran Wei , Qian Liu , Jun Luo , Ligang Feng , Wenxian Liu , Xijun Liu

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (4) : 54

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (4) :54 DOI: 10.20517/cs.2024.15
Review

Recent progress in electrochemical synthesis of urea through C-N coupling reactions

Author information +
History +
PDF

Abstract

The traditional industry synthesizes urea through the reaction of NH3 and CO2 under high temperatures and pressure. Electrochemical catalysis, which could replace the traditional ammonia synthesis route, i.e., co-reduces carbon dioxide with nitrogen sources [nitrite (NO2-), nitrate (NO3-), nitrogen (N2), and nitric oxide (NO)] to synthesize urea, is a promising strategy for the synthesize of urea under environmental conditions. Unlike traditional industry routes, electrochemical catalysis urea synthesis is beneficial for both resource utilization and environmental protection. Herein, the recent research progress of electrocatalytic urea synthesis is summarized, with emphasis on the design and preparation of the catalyst for the coupling of CO2 and nitrogen species directly to urea. The involved reaction mechanism of C-N coupling is generalized and discussed. Furthermore, the difficulties and challenges at the present stage are summarized, and the development direction of electrocatalytic synthesis of urea is prospected.

Keywords

Urea electrosynthesis / C-N coupling reaction mechanism / metallic catalyst / metal compound catalyst

Cite this article

Download citation ▾
Haoxiang Cai, Junyang Ding, Tong Hou, Tianran Wei, Qian Liu, Jun Luo, Ligang Feng, Wenxian Liu, Xijun Liu. Recent progress in electrochemical synthesis of urea through C-N coupling reactions. Chemical Synthesis, 2024, 4(4): 54 DOI:10.20517/cs.2024.15

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kuhl KP,Cave ER,Kibsgaard J.Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces.J Am Chem Soc2014;136:14107-13

[2]

Aresta M,Angelini A.Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2.Chem Rev2014;114:1709-42

[3]

Wang R,Xiang X,Shi X.MnO2 nanoarrays: an efficient catalyst electrode for nitrite electroreduction toward sensing and NH3 synthesis applications.Chem Commun2018;54:10340-2

[4]

Xu Y,Ren T.Cooperativity of Cu and Pd active sites in CuPd aerogels enhances nitrate electroreduction to ammonia.Chem Commun2021;57:7525-8

[5]

Franz RA.A new urea synthesis. I. The reaction of ammonia, carbon monoxide, and sulfur.J Org Chem1961;26:3304-5

[6]

Lahalih SM.Effect of new soil stabilizers on the compressive strength of dune sand.Constr Build Mater1998;12:321-8

[7]

Huang HM,Procter DJ.Radical anions from urea-type carbonyls: radical cyclizations and cyclization cascades.Angew Chem Int Ed Engl2018;57:4995-9

[8]

Barzagli F,Peruzzini M.From greenhouse gas to feedstock: formation of ammonium carbamate from CO2 and NH3 in organic solvents and its catalytic conversion into urea under mild conditions.Green Chem2011;13:1267-74

[9]

Pérez-fortes M,Tzimas E.CO2 utilization pathways: techno-economic assessment and market opportunities.Energy Procedia2014;63:7968-75

[10]

Giddey S,Kulkarni A.Review of electrochemical ammonia production technologies and materials.Int J Hydrogen Energ2013;38:14576-94

[11]

Smil V.Detonator of the population explosion.Nature1999;400:415

[12]

Bao D,Meng FL.Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle.Adv Mater2017;29:1604799

[13]

Chen C,Wen X.Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions.Nat Chem2020;12:717-24

[14]

Fu J,Hu J.Dual-sites tandem catalysts for C–N bond formation via electrocatalytic coupling of CO2 and nitrogenous small molecules.ACS Mater Lett2021;3:1468-76

[15]

Planas N,Poloni R.The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework.J Am Chem Soc2013;135:7402-5

[16]

Jouny M,Cheng T.Formation of carbon-nitrogen bonds in carbon monoxide electrolysis.Nat Chem2019;11:846-51

[17]

Liu J,Yang R,Wang X.Electrocatalytic reduction of CO2 to value-added chemicals via C–C/N coupling.Adv Energ Sust Res2023;4:2200192

[18]

Jiang M,Wang M.Review on electrocatalytic coreduction of carbon dioxide and nitrogenous species for urea synthesis.ACS Nano2023;17:3209-24

[19]

Chen C,Wang S.Electrocatalytic C–N coupling for urea synthesis.Small Sci2021;1:2100070

[20]

Shibata M,Furuya N.Electrochemical synthesis of urea on reduction of carbon dioxide with nitrate and nitrite ions using Cu-loaded gas-diffusion electrode.J Electroanal Chem1995;387:143-5

[21]

Cao N,Guan A.Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea.J Colloid Interface Sci2020;577:109-14

[22]

Feng Y,Zhang Y.Te-doped Pd nanocrystal for electrochemical urea production by efficiently coupling carbon dioxide reduction with nitrite reduction.Nano Lett2020;20:8282-9

[23]

Meng N,Liu Y,Zhang B.Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets.Cell Rep Phys Sci2021;2:100378

[24]

Zhang C,Yu Y,Zhang B.Engineering sulfur defects, atomic thickness, and porous structures into cobalt sulfide nanosheets for efficient electrocatalytic alkaline hydrogen evolution.ACS Catal2018;8:8077-83

[25]

Jia R,Wang C,Yu Y.Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2.ACS Catal2020;10:3533-40

[26]

Zhang J,Shao Q,Huang X.Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction.Angew Chem Int Ed Engl2019;58:5609-13

[27]

Huang Y,Wang C.Direct electrosynthesis of urea from carbon dioxide and nitric oxide.ACS Energy Lett2022;7:284-91

[28]

Long J,Zhang Y.Direct electrochemical ammonia synthesis from nitric oxide.Angew Chem Int Ed Engl2020;59:9711-8

[29]

Lv C,Liu H.Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide.Nat Sustain2021;4:868-76

[30]

Lv C,Zhong L.A defect engineered electrocatalyst that promotes high-efficiency urea synthesis under ambient conditions.ACS Nano2022;16:8213-22

[31]

Luo Y,Ou P.Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts.Nat Catal2023;6:939-48

[32]

Meng N,Wang C.Oxide-derived core-shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water.ACS Nano2022;16:9095-104

[33]

Leverett J,Yuwono JA.Tuning the coordination structure of Cu–N–C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3- to urea.Adv Energy Mater2022;12:2201500

[34]

Zhang X,Bo S.Identifying and tailoring C-N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst.Nat Commun2022;13:5337 PMCID:PMC9464195

[35]

Wei X,Zhu X.Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis.Adv Mater2023;35:e2300020

[36]

Yuan M,Xu Y.Highly selective electroreduction of N2 and CO2 to urea over artificial frustrated Lewis pairs.Energy Environ Sci2021;14:6605-15

[37]

Melen RL.A step closer to metal-free dinitrogen activation: a new chapter in the chemistry of frustrated Lewis pairs.Angew Chem Int Ed Engl2018;57:880-2

[38]

Zhang L,Wang Y.High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet.Angew Chem Int Ed Engl2021;60:25263-8

[39]

Yuan M,Bai Y.Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with Mott-Schottky heterostructure catalysts.Angew Chem Int Ed Engl2021;60:10910-8

[40]

He K,Liu X.Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis.Angew Chem Int Ed Engl2019;58:11903-9

[41]

Bo Y,Lin Y.Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local electronic structure of oxygen vacancy with dopant.Angew Chem Int Ed Engl2021;60:16085-92

[42]

Liu S,Wang Z.AuCu nanofibers for electrosynthesis of urea from carbon dioxide and nitrite.Cell Rep Phys Sci2022;3:100869

[43]

Huang Y,Liu Y.Unveiling the quantification minefield in electrocatalytic urea synthesis.Chem Eng J2023;453:139836

[44]

Zhao Y,Li W.Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu-W bimetallic C-N coupling sites.Nat Commun2023;14:4491 PMCID:PMC10372083

[45]

Lv L,Kong Y.Breaking the scaling relationship in C-N coupling via the doping effects for efficient urea electrosynthesis.Angew Chem Int Ed Engl2024;63:e202401943

[46]

Saravanakumar D,Lee S,Shin W.Electrocatalytic conversion of carbon dioxide and nitrate ions to urea by a Titania-Nafion composite electrode.ChemSusChem2017;10:3999-4003

[47]

Geng J,Jin M.Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites.Angew Chem Int Ed Engl2023;62:e202210958 PMCID:PMC10369923

[48]

Hou T,Zhang H.FeNi3 nanoparticles for electrocatalytic synthesis of urea from carbon dioxide and nitrate.Mater Chem Front2023;7:4952-60

[49]

Yu X,Li L,Zheng Y.Synergistic coupling of CO2 and NO3- for efficient electrosynthesis of urea using oxygen vacancy-rich Ru-doped CeO2 nanorods.Sci China Mater2024;67:1543-50

[50]

Yuan M,Zhang H.Host–guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal–organic framework.Energy Environ Sci2022;15:2084-95

[51]

Chen X,Kang J.Efficient C-N coupling in the direct synthesis of urea from CO2 and N2 by amorphous SbxBi1-xOy clusters.Proc Natl Acad Sci U S A2023;120:e2306841120 PMCID:PMC10523627

[52]

Govindan B,Kumar A,Abu Haija M.Synergistic bimetallic sites in 2D-on-2D heterostructures for enhanced C–N coupling in sustainable urea synthesis.ACS Sustain Chem Eng2024;12:8174-87

[53]

Jeon HS,Scholten F.Operando evolution of the structure and oxidation state of size-controlled Zn nanoparticles during CO2 electroreduction.J Am Chem Soc2018;140:9383-6

[54]

Zhao X,Sun J,Liu R.Blocking the defect sites on ultrathin Pt nanowires with Rh atoms to optimize the reaction path toward alcohol fuel oxidation.Chinese Chem Lett2020;31:1782-6

[55]

Chang F,Petkov V.Composition tunability and (111)-dominant facets of ultrathin platinum-gold alloy nanowires toward enhanced electrocatalysis.J Am Chem Soc2016;138:12166-75

[56]

Kim D,Becknell N.Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles.J Am Chem Soc2017;139:8329-36

[57]

Yu Y,Yu Y,Zhang B.Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts.Sci China Chem2020;63:1469-76

[58]

Won DH,Koh J.Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst.Angew Chem Int Ed Engl2016;55:9297-300

[59]

Lu L,Ma J.Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels.Angew Chem Int Ed Engl2018;57:14149-53

[60]

Siva P,Selvam M,Rajendran V.Electrocatalytic conversion of carbon dioxide to urea on nano-FeTiO3 surface.Ionics2017;23:1871-8

[61]

Yang M,He J.Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia.Nano Res2024;17:1209-16

[62]

Ma S,Perez GM,Kenis PJ.Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction.ChemSusChem2014;7:866-74

[63]

Wang H,Jin M.V-doped TiO2 nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia.Mater Today Phys2023;30:100944

[64]

Zhao Y,Shi R.Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm.Adv Mater2019;31:e1806482

[65]

Cao N,Zang K.Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation.Nat Commun2019;10:2877 PMCID:PMC6599206

[66]

Han Z,Hong S.Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction.Appl Catal B Environ2019;257:117896

[67]

Stephan DW.Frustrated Lewis Pairs.J Am Chem Soc2015;137:10018-32

[68]

Dong Y,Popescu R.Tailoring surface frustrated Lewis pairs of In2O3-x(OH)y for gas-phase heterogeneous photocatalytic reduction of CO2 by isomorphous substitution of In3+ with Bi3.Adv Sci2018;5:1700732 PMCID:PMC6009996

[69]

Shan W,Zhao H.In Situ surface-enhanced raman spectroscopic evidence on the origin of selectivity in CO2 electrocatalytic reduction.ACS Nano2020;14:11363-72

[70]

He Y,Wang L.Self-gating in semiconductor electrocatalysis.Nat Mater2019;18:1098-104

[71]

Xu L,Zhang X.NOx sensitivity of conductometric In(OH)3 sensors operated at room temperature and transition from p- to n- type conduction.Sensor Actuat B Chem2017;245:533-40

[72]

Gavali DS,Thapa R.First-principles identification of interface effect on Li storage capacity of C3N/graphene multilayer heterostructure.J Colloid Interface Sci2022;610:80-8

[73]

Roy P,Sarkar P.Dual-silicon-doped graphitic carbon nitride sheet: an efficient metal-free electrocatalyst for urea synthesis.J Phys Chem Lett2021;12:10837-44

[74]

Dutta S.Urea production on metal-free dual silicon doped C9N4 nanosheet under ambient conditions by electrocatalysis: a first principles study.Chemphyschem2023;24:e202200453

[75]

Liu S,Sun J.Coordination environment engineering to boost electrocatalytic CO2 reduction performance by introducing boron into single-Fe-atomic catalyst.Chem Eng J2022;437:135294

[76]

Wu H,Gao X.Research progress on preparation and application of polyaniline and its composite materials.China Powder Sci Technol2023;29:70-80

[77]

Jiao L,Zhang Y.Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction.J Am Chem Soc2021;143:19417-24

[78]

Chen K,Ni G.Nickel polyphthalocyanine with electronic localization at the nickel site for enhanced CO2 reduction reaction.Appl Catal B Environ2022;306:121093

[79]

Zhang H,Luo H,Kuang M.Iron nanoparticles protected by chainmail-structured graphene for durable electrocatalytic nitrate reduction to nitrogen.Angew Chem Int Ed Engl2023;62:e202217071

[80]

Zhu C,Yao X,Su Z.Fascinating electrocatalysts with dispersed di-metals in MN3-M’N4 moiety as two active sites separately for N2 and CO2 reduction reactions and jointly for C–N coupling and urea production.Small Methods2023;7:e2201331

[81]

Shi MM,Wulan BR.Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions.Adv Mater2017;29:1606550

[82]

Shi M,Li S,Yan J.Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution.Adv Energy Mater2018;8:1800124

[83]

Qiao B,Yang X.Single-atom catalysis of CO oxidation using Pt1/FeOx.Nat Chem2011;3:634-41

[84]

Shibata M.Electrochemical synthesis of urea at gas-diffusion electrodes: Part VI. Simultaneous reduction of carbon dioxide and nitrite ions with various metallophthalocyanine catalysts.J Electroanal Chem2001;507:177-84

[85]

Yang JP,Chen J.Structural design and application of fiber-based electrocatalytic materials.China Powder Sci Technol2024;30:161-70

[86]

Kayan DB.Simultaneous electrocatalytic reduction of dinitrogen and carbon dioxide on conducting polymer electrodes.Appl Catal B Environ2016;181:88-93

[87]

Tao H,Back S.Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO2 to CO.Chem Sci2018;9:483-7 PMCID:PMC5868300

[88]

Zhang Q,Zhang M.Electronic structure optimization boosts Pd nanocrystals for ethanol electrooxidation realized by Te doping.CrystEngComm2022;24:5580-7

[89]

Zhu X,Jing Y.Electrochemical synthesis of urea on MBenes.Nat Commun2021;12:4080 PMCID:PMC8253759

[90]

Qiu W,Li Y.Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis.Angew Chem Int Ed Engl2024;63:e202402684

[91]

Wang XL,Qiao M.Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system.Angew Chem Int Ed Engl2018;57:9660-4

[92]

König M,Klemm E.Solvents and supporting electrolytes in the electrocatalytic reduction of CO2.iScience2019;19:135-60 PMCID:PMC6669325

[93]

Ren S,Salvatore D.Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell.Science2019;365:367-9

[94]

Chen S,Liu W.Engineering active sites of cathodic materials for high-performance Zn-nitrogen batteries.Nano Res2023;16:9214-30

[95]

Wang L,Wang S,Wang Y.The reformation of catalyst: from a trial-and-error synthesis to rational design.Nano Res2024;17:3261-301

[96]

Li R.Understanding the structure-performance relationship of active sites at atomic scale.Nano Res2022;15:6888-923

[97]

Qi D,Wei T.High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN.Nano Res Energy2022;1:e9120022

[98]

Liu W,Tang J.Energy-efficient anodic reactions for sustainable hydrogen production via water electrolysis.Chem Synth2023;3:44

[99]

Chen C,Zhu X.Balancing sub-reaction activity to boost electrocatalytic urea synthesis using a metal-free electrocatalyst.Carbon Energy2023;5:e345

[100]

Wang X,Yin W.Metal–organic framework-derived phosphide nanomaterials for electrochemical applications.Carbon Energy2022;4:246-81

[101]

Zheng X,Wang Q,Li Y.Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis.Nano Res2022;15:7806-39

[102]

Liu X,Ma J.Advances in the synthesis strategies of carbon⁃based single-atom catalysts and their electrochemical applications.China Powder Sci Technol2024;30:35-45

[103]

Liu X,Xiao J.pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper.Nat Commun2019;10:32 PMCID:PMC6318338

[104]

Yang Y,Chen K.Research progress on adsorption mechanism of radioactive iodine by metal-organic framework composites.China Powder Sci Technol2024;30:151-60

[105]

Fan Q,Sun T.Advances of the functionalized carbon nitrides for electrocatalysis.Carbon Energy2022;4:211-36

[106]

Gan T.Atomically dispersed materials: ideal catalysts in atomic era.Nano Res2024;17:18-38

[107]

Cao N,Wang K,Xie P.High-throughput screening of B/N-doped graphene supported single-atom catalysts for nitrogen reduction reaction.Chem Synth2023;3:23

[108]

Xiong H,Chen K.Urea synthesis via electrocatalytic oxidative coupling of CO with NH3 on Pt.Nat Catal2024;7:785-95

[109]

Shi Z,Li K,Tang Y.Flue gas to urea: a path of flue gas resourceful utilization through electrocatalysis.Chem Eng J2023;461:141933

[110]

Ding S,Dai X.Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries.Chinese J Struc Chem2024;43:100302

[111]

Ji Y,Yan L.Research progress in preparation, modification and application of biomass-based single-atom catalysts.China Powder Sci Technol2023;29:100-7

[112]

Zhang C,Wang Y.Reduction of 4-nitrophenol with nano-gold@graphene composite porous material.China Powder Sci Technol2023;29:80-93

[113]

Wang H,Liu W.S-block metal Mg-mediated Co–N–C as efficient oxygen electrocatalyst for durable and temperature-adapted Zn-air batteries.Adv Sci2024;e2403865

AI Summary AI Mindmap
PDF

269

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/