Three-component cross-coupling reactions involving alkenes enabled by visible-light and earth-abundant-metal-catalysis

Jun-Song Jia , Xiao-Yi Chen , Yu-Long Li , Wei Shu

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (4) : 72

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (4) :72 DOI: 10.20517/cs.2024.140
review-article

Three-component cross-coupling reactions involving alkenes enabled by visible-light and earth-abundant-metal-catalysis

Author information +
History +
PDF

Abstract

Catalytic difunctionalizations of alkenes represent one of the most straightforward and efficient ways to build molecular complexity due to the simultaneous installation of two vicinal chemical bonds onto alkenes, providing profound chemical space for selective transformations in organic synthesis. Over the past decade, the merge of visible-light catalysis and earth-abundant-metal catalysis has taken advantage of green catalysis, thus evolving into an enabling platform for difunctionalization of alkenes. This dual catalytic mode facilitates the construction of multiple chemical bonds over the π-bond of alkenes in one step, providing a mild and straightforward method for the rapid construction of sp3-rich structures in a selective manner. In this review, we systematically summarized the progress of three-component cross-coupling reaction of olefins catalyzed by visible-light and first-row transition metal over the past decade. The combination of visible-light with different first-row transition metals, such as copper, nickel, chromium, titanium, manganese and iron, is discussed, along with the detailed reaction mechanisms. The scope of alkenes in this review includes alkenes, 1,3-dienes and 1,3-enynes. Moreover, the future directions and efforts in visible-light and earth-abundant-metal-catalyzed three-component reactions of alkenes are also discussed.

Keywords

Photocatalysis / earth-abundant transition-metal catalysis / alkenes / three-component reaction / cross-coupling

Cite this article

Download citation ▾
Jun-Song Jia, Xiao-Yi Chen, Yu-Long Li, Wei Shu. Three-component cross-coupling reactions involving alkenes enabled by visible-light and earth-abundant-metal-catalysis. Chemical Synthesis, 2025, 5(4): 72 DOI:10.20517/cs.2024.140

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shi W,Lei A.Transition-metal catalyzed oxidative cross-coupling reactions to form C–C bonds involving organometallic reagents as nucleophiles.Chem Soc Rev2011;40:2761-76

[2]

Prier CK,MacMillan DW.Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis.Chem Rev2013;113:5322-63 PMCID:PMC4028850

[3]

Cherney AH,Reisman SE.Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds.Chem Rev2015;115:9587-652 PMCID:PMC4566132

[4]

Yi H,Wang H.Recent advances in radical C–H activation/radical cross-coupling.Chem Rev2017;117:9016-85

[5]

Korch KM.Cross-coupling of heteroatomic electrophiles.Chem Rev2019;119:8192-228 PMCID:PMC6620169

[6]

He J,Chan KSL,Yu JQ.Palladium-catalyzed transformations of alkyl C–H bonds.Chem Rev2017;117:8754-86 PMCID:PMC5516964

[7]

Biffis A,Del Zotto A.Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review.Chem Rev2018;118:2249-95

[8]

Xia Y,Wang J.Transition-metal-catalyzed cross-couplings through carbene migratory insertion.Chem Rev2017;117:13810-89

[9]

Takise R,Yamaguchi J.Cross-coupling of aromatic esters and amides.Chem Soc Rev2017;46:5864-88

[10]

Xu B,Fang C,Zhang J.Recent advances in Pd-catalyzed asymmetric cyclization reactions.Chem Soc Rev2024;53:883-971

[11]

Zhang Z,Zhou M,Zhang W.Asymmetric transfer and pressure hydrogenation with earth-abundant transition metal catalysts.Chin J Chem2018;36:443-54

[12]

Colonna P,Gil R.Alkene hydroamination via earth‐abundant transition metal (iron, cobalt, copper and zinc) catalysis: a mechanistic overview.Adv Synth Catal2020;362:1550-63

[13]

Cong X.Mechanistic diversity of low-valent chromium catalysis: cross-coupling and hydrofunctionalization.Acc Chem Res2021;54:2014-26

[14]

Feng Y,Tang X.Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion.Chem Soc Rev2021;50:6042-93

[15]

Süsse L.Enantioselective formation of quaternary centers by allylic alkylation with first-row transition-metal catalysts.Chem Rev2021;121:4084-99 PMCID:PMC8846597

[16]

Cruz-navarro JA,Serrano-garcía JS.Advances in cross-coupling reactions catalyzed by aromatic pincer complexes based on earth-abundant 3d metals (Mn, Fe, Co, Ni, Cu).Catalysts2024;14:69

[17]

Bansal S,Punji B.Advances in C( sp2 )–H/C( sp2 )–H oxidative coupling of (hetero)arenes using 3d transition metal catalysts.Adv Synth Catal2021;363:1998-2022

[18]

Narayanam JM.Visible light photoredox catalysis: applications in organic synthesis.Chem Soc Rev2011;40:102-13

[19]

Xuan J.Visible-light photoredox catalysis.Angew Chem Int Ed Engl2012;51:6828-38

[20]

Romero NA.Organic photoredox catalysis.Chem Rev2016;116:10075-166

[21]

Bellotti P,Faber T.Photocatalytic late-stage C–H functionalization.Chem Rev2023;123:4237-352

[22]

Juliá F,Leonori D.Applications of halogen-atom transfer (XAT) for the generation of carbon radicals in synthetic photochemistry and photocatalysis.Chem Rev2022;122:2292-352

[23]

Ji P,Li M.Photochemical dearomative skeletal modifications of heteroaromatics.Chem Soc Rev2024;53:6600-24 PMCID:PMC11181993

[24]

Zubkov MO.Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond.Chem Soc Rev2024;53:4741-85

[25]

Yu XY,Xiao WJ.Visible light-driven radical-mediated C–C bond cleavage/functionalization in organic synthesis.Chem Rev2021;121:506-61

[26]

Skubi KL,Yoon TP.Dual catalysis strategies in photochemical synthesis.Chem Rev2016;116:10035-74 PMCID:PMC5083252

[27]

Twilton J,Zhang P,Evans RW.The merger of transition metal and photocatalysis.Nat Rev Chem2017;1:0052

[28]

Wang PZ,Xiao WJ.Emerging trends in copper-promoted radical-involved C–O bond formations.J Am Chem Soc2023;145:17527-50

[29]

Huo H,Wang C.Asymmetric photoredox transition-metal catalysis activated by visible light.Nature2014;515:100-3

[30]

Vila C.Merging visible-light-photoredox and nickel catalysis.ChemCatChem2015;7:1790-3

[31]

Cheung KPS,Gevorgyan V.Visible light-induced transition metal catalysis.Chem Rev2022;122:1543-625 PMCID:PMC9017709

[32]

Song L,Gong L.Photoinduced copper-catalyzed enantioselective coupling reactions.Chem Soc Rev2023;52:2358-76

[33]

Zhang J.Metallaphotoredox catalysis for sp3 C–H functionalizations through single-electron transfer.Nat Catal2024;7:963-76

[34]

Zhang J.Metallaphotoredox catalysis for sp3 C–H functionalizations through hydrogen atom transfer (HAT).Chem Soc Rev2023;52:4099-120

[35]

Saini V,Sigman MS.Transition-metal-catalyzed laboratory-scale carbon–carbon bond-forming reactions of ethylene.Angew Chem Int Ed Engl2013;52:11206-20 PMCID:PMC3990188

[36]

McDonald RI,Stahl SS.Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications.Chem Rev2011;111:2981-3019 PMCID:PMC3076534

[37]

Dhungana RK,Basnet P.Transition metal-catalyzed dicarbofunctionalization of unactivated olefins.Chem Rec2018;18:1314-40

[38]

Yin G,Liu G.Palladium(II)-catalyzed oxidative difunctionalization of alkenes: bond forming at a high-valent palladium center.Acc Chem Res2016;49:2413-23

[39]

Wickham LM.Transition metal (Ni, Cu, Pd)-catalyzed alkene dicarbofunctionalization reactions.Acc Chem Res2021;54:3415-37 PMCID:PMC8860250

[40]

Qi X.Nickel-catalyzed dicarbofunctionalization of alkenes.ACS Catal2020;10:8542-56 PMCID:PMC7963398

[41]

Peng J.Recent advances in carbonylative difunctionalization of alkenes.Adv Synth Catal2020;362:3059-80

[42]

Paria S.Copper in photocatalysis.ChemCatChem2014;6:2477-83

[43]

Wang PZ,Xiao WJ.Photocatalysis meets copper catalysis: a new opportunity for asymmetric multicomponent radical cross-coupling reactions.Acc Chem Res2024;57:3433-48

[44]

Engl S.Copper-photocatalyzed ATRA reactions: concepts, applications, and opportunities.Chem Soc Rev2022;51:5287-99

[45]

Hossain A,Reiser O.Copper’s rapid ascent in visible-light photoredox catalysis.Science2019;364:eaav9713

[46]

Abderrazak Y,Reiser O.Visible-light-induced homolysis of earth-abundant metal-substrate complexes: a complementary activation strategy in photoredox catalysis.Angew Chem Int Ed Engl2021;60:21100-15 PMCID:PMC8519011

[47]

Juliá F.Ligand-to-metal charge transfer (LMCT) photochemistry at 3d-metal complexes: an emerging tool for sustainable organic synthesis.ChemCatChem2022;14:e202200916

[48]

Kochi JK.Photolyses of metal compounds: cupric chloride in organic media.J Am Chem Soc1962;84:2121-7

[49]

Lian P,Li J,Wan X.Visible-light-induced vicinal dichlorination of alkenes through LMCT excitation of CuCl2.Angew Chem Int Ed Engl2020;59:23603-8

[50]

Fumagalli G,Boyd S.Three-component azidation of styrene-type double bonds: light-switchable behavior of a copper photoredox catalyst.Angew Chem Int Ed Engl2015;54:11481-4 PMCID:PMC4678422

[51]

Hossain A,Eichinger C.Visible-light-accelerated copper(II)-catalyzed regio- and chemoselective oxo-azidation of vinyl arenes.Angew Chem Int Ed Engl2018;57:8288-92

[52]

He XX,Zhao YX.CuCl2 -catalyzed α-chloroketonation of aromatic alkenes via visible-light-induced LMCT.Chem Asian J2023;18:e202200954

[53]

Guo Q,Wang Y,Wang R.Photoinduced, copper-catalyzed three components cyanofluoroalkylation of alkenes with fluoroalkyl iodides as fluoroalkylation reagents.Chem Commun2017;53:12317-20

[54]

He J,Fu GC.Visible-light-induced, copper-catalyzed three-component coupling of alkyl halides, olefins, and trifluoromethylthiolate to generate trifluoromethyl thioethers.ACS Catal2018;8:11741-8 PMCID:PMC6687088

[55]

Xiong Y,Zhang G.Copper-catalyzed intermolecular carboamination of alkenes induced by visible light.Org Lett2019;21:1699-703

[56]

Hu Z,Wang K,Wu F.Visible-light-induced copper-catalyzed intermolecular three-component difluoroalkyl thiocyanidation of alkenes.Org Lett2023;25:4835-9

[57]

Zhang Y.Visible-light-induced copper-catalyzed alkynylation/alkylation of alkenes.J Org Chem2020;85:3213-23

[58]

Zhang Y,Chen B.Copper-catalyzed photoinduced enantioselective dual carbofunctionalization of alkenes.Org Lett2020;22:1490-4

[59]

Yu XY,Chen J,Xiao WJ.Copper-catalyzed radical cross-coupling of redox-active oxime esters, styrenes, and boronic acids.Angew Chem Int Ed Engl2018;57:15505-9

[60]

Wang PZ,Jiang M,Xiao WJ.A general copper-box system for the asymmetric arylative functionalization of benzylic, propargylic or allenylic radicals.Angew Chem Int Ed Engl2024;63:e202411469

[61]

Chen J,Wang PZ.Photoinduced, copper-catalyzed radical cross-coupling of cycloketone oxime esters, alkenes, and terminal alkynes.Org Lett2019;21:4359-64

[62]

Lv XL,Wang QL.Rapid synthesis of γ-arylated carbonyls enabled by the merge of copper- and photocatalytic radical relay alkylarylation of alkenes.Org Lett2019;21:56-9

[63]

Lv X.Unified and practical access to ɤ-alkynylated carbonyl derivatives via streamlined assembly at room temperature.Commun Chem2019;2:219

[64]

Wang PZ,Chen J,Xiao WJ.Asymmetric three-component olefin dicarbofunctionalization enabled by photoredox and copper dual catalysis.Nat Commun2021;12:1815 PMCID:PMC7985521

[65]

Yan D,Qian H.Photoredox-catalyzed and copper(II) salt-assisted radical addition/hydroxylation reaction of alkenes, sulfur ylides, and water.ACS Catal2022;12:3279-85

[66]

Condit IJ.“Gall-Flower” of the fig, a misnomer.Science1945;102:128-30

[67]

Kharasch MS,Jensen EV.Addition of derivatives of chlorinated acetic acids to olefins.J Am Chem Soc1945;67:1626

[68]

Kharasch MS,Urry WH.Addition of carbon tetrabromide and bromoform to olefins.J Am Chem Soc1946;68:154-5

[69]

Wang P,Wu X,Xiao W.Copper-catalyzed three-component photo-ATRA-type reaction for asymmetric intermolecular C–O coupling.ACS Catal2022;12:10925-37

[70]

Cai Y,Ritter T.Photoinduced copper-catalyzed late-stage azidoarylation of alkenes via arylthianthrenium salts.J Am Chem Soc2023;145:13542-8 PMCID:PMC10311530

[71]

Zhang B,Mao ZC.Enantioselective cyanofunctionalization of aromatic alkenes via radical anions.J Am Chem Soc2024;146:1410-22

[72]

Wang PZ,Cheng Y,Xiao WJ.Photoinduced copper-catalyzed asymmetric three-component coupling of 1,3-dienes: an alternative to kharasch-sosnovsky reaction.Angew Chem Int Ed Engl2021;60:22956-62

[73]

Li G,Xiao W.Photoinduced copper-catalyzed asymmetric radical three-component cross-coupling of 1,3-enynes with oxime esters and carboxylic acids.Org Chem Front2023;10:2773-81

[74]

Li GQ,Jiang M.Photoinduced copper-catalyzed asymmetric three-component radical 1,2-azidooxygenation of 1,3-dienes.Angew Chem Int Ed Engl2024;63:e202405560

[75]

Chen J,Wang PZ.Photoinduced copper-catalyzed asymmetric C–O cross-coupling.J Am Chem Soc2021;143:13382-92

[76]

Lu FD,He GF,Xiao WJ.Enantioselective radical carbocyanation of 1,3-dienes via photocatalytic generation of allylcopper complexes.J Am Chem Soc2021;143:4168-73

[77]

Wu YL,Rao L,Xiao WJ.Selective three-component 1,2-aminoalkoxylation of 1-aryl-1,3-dienes by dual photoredox and copper catalysis.Org Lett2022;24:7470-5

[78]

Bi MH,Xiao WJ.Visible-light-induced photoredox-catalyzed selective 1,4-difluoroalkylesterification of 1-aryl-1,3-dienes.Org Lett2022;24:7589-94

[79]

Liu Y,Chen Y,Shi L.Photoinduced copper-catalyzed selective three-component 1,2-amino oxygenation of 1,3-dienes.Chem Commun2023;59:10388-91

[80]

Fu GC.Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes.ACS Cent Sci2017;3:692-700 PMCID:PMC5532721

[81]

García-Domínguez A,Nevado C.Dual photoredox/nickel-catalyzed three-component carbofunctionalization of alkenes.Angew Chem Int Ed Engl2019;58:12286-90

[82]

Campbell MW,Kelly CB.Three-component olefin dicarbofunctionalization enabled by nickel/photoredox dual catalysis.J Am Chem Soc2019;141:20069-78 PMCID:PMC7086343

[83]

Mega RS,Noble A.Decarboxylative conjunctive cross‐coupling of vinyl boronic esters using metallaphotoredox catalysis.Angew Chem Int Ed Engl2020;132:4405-9

[84]

Sun SZ,Mega RS,Martin R.Site-selective 1,2-dicarbofunctionalization of vinyl boronates through dual catalysis.Angew Chem Int Ed Engl2020;59:4370-4

[85]

Guo L,Zhu S.Selective, intermolecular alkylarylation of alkenes via photoredox/nickel dual catalysis.Org Lett2019;21:4771-6

[86]

Li Y,Gu Z,Xia J.Photoredox Ni-catalyzed branch-selective reductive coupling of aldehydes with 1,3-dienes.ACS Catal2020;10:1528-34

[87]

Huang L,Yi L,Kancherla R.Cascade cross-coupling of dienes: photoredox and nickel dual catalysis.Angew Chem Int Ed Engl2020;59:457-64 PMCID:PMC6973272

[88]

Zhang Z.Arylsilylation of electron-deficient alkenes via cooperative photoredox and nickel catalysis.ACS Catal2020;10:777-82

[89]

Guo L,Zhang Y.General method for enantioselective three-component carboarylation of alkenes enabled by visible-light dual photoredox/nickel catalysis.J Am Chem Soc2020:20390-9 PMCID:PMC8131407

[90]

Zheng S,Hu Y.Selective 1,2-aryl-aminoalkylation of alkenes enabled by metallaphotoredox catalysis.Angew Chem2020;132:18066-72

[91]

Xu S,Zhou Z.Three-component alkene difunctionalization by direct and selective activation of aliphatic C–H bonds.Angew Chem Int Ed Engl2021;60:7405-11

[92]

Campbell MW,Polites VC,Molander GA.Photochemical C–H activation enables nickel-catalyzed olefin dicarbofunctionalization.J Am Chem Soc2021;143:3901-10 PMCID:PMC8012054

[93]

Jiang H,Daniliuc CG.Three-component aminoarylation of electron-rich alkenes by merging photoredox with nickel catalysis.Angew Chem Int Ed Engl2021;60:14399-404 PMCID:PMC8252614

[94]

Qian P,Wang YE.Catalytic enantioselective reductive domino alkyl arylation of acrylates via nickel/photoredox catalysis.Nat Commun2021;12:6613 PMCID:PMC8595378

[95]

Xi X,Yuan W.Nickel-catalyzed three-component alkylacylation of alkenes enabled by a photoactive electron donor-acceptor complex.Org Lett2022;24:3938-43

[96]

Dey P,Rai P.Dicarbofunctionalizations of an unactivated alkene via photoredox/nickel dual catalysis.Org Lett2022;24:6261-5

[97]

Li X,Chen F.Three-component enantioselective alkenylation of organophosphonates via nickel metallaphotoredox catalysis.Chem2023;9:154-69 PMCID:PMC11566131

[98]

Liu MS.Rapid synthesis of β-chiral sulfones by ni-organophotocatalyzed enantioselective sulfonylalkenylation of alkenes.JACS Au2023;3:1321-7 PMCID:PMC10207110

[99]

Du X,Nevado C.Dual nickel/photoredox-catalyzed asymmetric carbosulfonylation of alkenes.J Am Chem Soc2023;145:12532-40 PMCID:PMC10273242

[100]

Zhao H.Three-component reductive conjugate addition/aldol tandem reaction enabled by nickel/photoredox dual catalysis.Chem Sci2023;14:1485-90 PMCID:PMC9906790

[101]

Ye F,Luo Y,Yuan W.Ligand-controlled regioreversed 1,2-aryl-aminoalkylation of alkenes enabled by photoredox/nickel catalysis.ACS Catal2024;14:8505-17

[102]

Koo Y.Nickel/photoredox-catalyzed three-component silylacylation of acrylates via chlorine photoelimination.Chem Sci2024;15:7707-13 PMCID:PMC11110154

[103]

Cong F,Ye SH,Rao W.A bimolecular homolytic substitution-enabled platform for multicomponent cross-coupling of unactivated alkenes.J Am Chem Soc2024;146:10274-80

[104]

Wang JZ,Nguyen JA,MacMillan DWC.Triple radical sorting: aryl-alkylation of alkenes.J Am Chem Soc2024;146:15693-700 PMCID:PMC11610504

[105]

Hu X,Kong W,Nevado C.Nickel-catalysed enantioselective alkene dicarbofunctionalization enabled by photochemical aliphatic C–H bond activation.Nat Catal2024;7:655-65 PMCID:PMC11208155

[106]

Schwarz JL,Paulisch TO.Dialkylation of 1,3-dienes by dual photoredox and chromium catalysis.ACS Catal2020;10:1621-7

[107]

Liu J,Luo Y.Photoredox-enabled chromium-catalyzed alkene diacylations.ACS Catal2022;12:1879-85

[108]

Wu J,Duan C.Diastereoselective 1,2-difunctionalization of 1,3-enynes enabled by merging photoexcited Hantzsch ester with chromium catalysis.Org Chem Front2024;11:284-9

[109]

Hu Q,Zeng T.1,3-butadiene dicarbofunctionalization enabled by the dual role of diaryl ketone in photo-HAT/chromium catalysis.Org Lett2024;26:1550-5

[110]

Yan H,Liu Y.Photoredox chromium and cobalt dual catalysis for carbonyl allylation with butadiene via allyl radical intermediates.Org Chem Front2024;11:684-9

[111]

Li F,Chen Y.Photocatalytic generation of π-allyltitanium complexes via radical intermediates.Angew Chem Int Ed Engl2021;60:1561-6

[112]

Li F,Li X.Photocatalytic generation of π-allyltitanium complexes from butadiene via a radical strategy.Synthesis2021;53:1889-900

[113]

Hao E,Liu Y.Difunctionalization of 1,3-butadiene via sequential radical thiol-ene reaction and allylation by dual photoredox and titanium catalysis.Org Lett2023;25:5094-9

[114]

Yan H,Zhang F.Radical crotylation of aldehydes with 1,3-butadiene by photoredox cobalt and titanium dual catalysis.Org Lett2023;25:7694-9

[115]

Bian KJ,Kao SC.Modular difunctionalization of unactivated alkenes through bio-inspired radical ligand transfer catalysis.J Am Chem Soc2022;144:11810-21

[116]

Li C,Wang Z.Visible light-initiated manganese-catalyzed hydrosulfonylation of alkenes.Green Chem2023;25:4122-8

[117]

Tang F,Yang W.Synergistic photoredox and iron catalyzed 1,2-thiosulfonylation of alkenes with thiophenols and sulfonyl chlorides.Org Lett2024;26:236-40

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/