Recent advances in conjugated ladder-type porous polymer networks for rechargeable batteries

Cunhang Zhao , Jie Yan , Zijiu Ma , Yalin Zhang , Tu Hu , Haitao Zhang

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (2) : 32

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (2) :32 DOI: 10.20517/cs.2024.14
review-article

Recent advances in conjugated ladder-type porous polymer networks for rechargeable batteries

Author information +
History +
PDF

Abstract

Owing to the abundant resources, environmental benignity, structural designability, and reasonable theoretical capacity, organic electrode compounds are considered to be an excellent substitute for traditional inorganic electrode materials, which can be applied in green and sustainable recharge batteries. Consequently, organic electrode materials have received considerable attention over the past decade, and numerous organic and polymeric materials have been prepared as high-efficiency electrode materials for batteries. Among them, conjugated ladder-type porous polymer networks (PPNs) with intralayer π-conjugation, interlayer π-π stacking interactions, and rigid backbones have emerged as attractive platforms for rechargeable batteries. This review summarizes the linkage chemistry, synthesis methods, and typical structure of ladder PPNs, the redox activity of the linkage, and their applications in secondary batteries. Further, approaches to enhance the performance and efficiency of these electrode materials are presented. The potential battery applications of the ladder PPNs structure are also discussed.

Keywords

Conjugated ladder polymer networks / synthetic method / rechargeable batteries

Cite this article

Download citation ▾
Cunhang Zhao, Jie Yan, Zijiu Ma, Yalin Zhang, Tu Hu, Haitao Zhang. Recent advances in conjugated ladder-type porous polymer networks for rechargeable batteries. Chemical Synthesis, 2025, 5(2): 32 DOI:10.20517/cs.2024.14

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim J,Yoo J,Ko Y.Organic batteries for a greener rechargeable world.Nat Rev Mater2023;8:54-70

[2]

Xie J,Zhang Q.Nanostructured conjugated polymers: toward high-performance organic electrodes for rechargeable batteries.ACS Energy Lett2017;2:1985-96

[3]

Lee S,Ku K.Recent progress in organic electrodes for Li and Na rechargeable batteries.Adv Mater2018;30:e1704682

[4]

Lu Y,Li L,Chen J.Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries.Chem2018;4:2786-813

[5]

Mauger A,Paolella A,Zaghib K.Recent progress on organic electrodes materials for rechargeable batteries and supercapacitors.Materials2019;12:1770 PMCID:PMC6600696

[6]

Xie J.Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes.Small2019;15:e1805061

[7]

Chen Y,Li Z.Redox polymers for rechargeable metal-ion batteries.EnergyChem2020;2:100030

[8]

Poizot P,Renault S,Liang Y.Opportunities and challenges for organic electrodes in electrochemical energy storage.Chem Rev2020;120:6490-557

[9]

Yin X,Shi S.Recent progress in advanced organic electrode materials for sodium-ion batteries: synthesis, mechanisms, challenges and perspectives.Adv Funct Mater2020;30:1908445

[10]

Friebe C.High-power-density organic radical batteries.Top Curr Chem2017;375:19

[11]

Wang DY,Fu Y.Organosulfides: an emerging class of cathode materials for rechargeable lithium batteries.Acc Chem Res2019;52:2290-300

[12]

Häupler B,Schubert US.Carbonyls: powerful organic materials for secondary batteries.Adv Energy Mater2015;5:1402034

[13]

Luo C,Ji X.Azo compounds as a family of organic electrode materials for alkali-ion batteries.Proc Natl Acad Sci U S A2018;115:2004-9 PMCID:PMC5834706

[14]

Peng C,Su J.Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes.Nat Energy2017;2:17074

[15]

Armand M,Vezin H.Conjugated dicarboxylate anodes for Li-ion batteries.Nat Mater2009;8:120-5

[16]

Kim J,You J.Conductive polymers for next-generation energy storage systems: recent progress and new functions.Mater Horiz2016;3:517-35

[17]

Zhang Z,Lou H,Sun X.Conjugated polymers for flexible energy harvesting and storage.Adv Mater2018;30:e1704261

[18]

Sun T,Guo W,Zhang Q.Covalent–organic frameworks: advanced organic electrode materials for rechargeable batteries.Adv Energy Mater2020;10:1904199

[19]

Li J,Li Q.Bulk COFs and COF nanosheets for electrochemical energy storage and conversion.Chem Soc Rev2020;49:3565-604

[20]

Sun H,Liang W.Porous organic polymers as active electrode materials for energy storage applications.Small Methods2023;e2301335

[21]

Luo D,Ma Q.Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies.Chem Soc Rev2022;51:2917-38

[22]

Lee J,Yuan T,Fang L.Fully conjugated ladder polymers.Chem Sci2017;8:2503-21 PMCID:PMC5431637

[23]

Teo YC,Xia Y.Synthesis of ladder polymers: developments, challenges, and opportunities.Chemistry2017;23:14101-12

[24]

Waller PJ,Yaghi OM.Chemistry of covalent organic frameworks.Acc Chem Res2015;48:3053-63

[25]

Geng K,Liu R.Covalent organic frameworks: design, synthesis, and functions.Chem Rev2020;120:8814-933

[26]

Gui B,Cheng Y,Wang C.Structural design and determination of 3D covalent organic frameworks.Trends Chem2022;4:437-50

[27]

Shi Y,Gao F.Covalent organic frameworks: recent progress in biomedical applications.ACS Nano2023;17:1879-905

[28]

Wang C,Zhu Y,Wu J.2D covalent organic frameworks: from synthetic strategies to advanced optical-electrical-magnetic functionalities.Adv Mater2022;34:e2102290

[29]

Zhu Y,Zhang X.Emerging porous organic polymers for biomedical applications.Chem Soc Rev2022;51:1377-414

[30]

Zhang T,Chen W.Porous organic polymers: a promising platform for efficient photocatalysis.Mater Chem Front2020;4:332-53

[31]

Yang DH,Ding X.Porous organic polymers for electrocatalysis.Chem Soc Rev2022;51:761-91

[32]

Zhang Z,Zhi Y,Liu X.Porous organic polymers for light-driven organic transformations.Chem Soc Rev2022;51:2444-90

[33]

Fajal S,Ghosh SK.Porous organic polymers (POPs) for environmental remediation.Mater Horiz2023;10:4083-138

[34]

Liu X,Xu S.Porous organic polymers for high-performance supercapacitors.Chem Soc Rev2022;51:3181-225

[35]

Che S.Porous ladder polymer networks.Chem2020;6:2558-90

[36]

Holguin K,Qin K.Organic electrode materials for non-aqueous, aqueous, and all-solid-state Na-ion batteries.J Mater Chem A2021;9:19083-115

[37]

Yu Q,Li M.Electrochemical activity of nitrogen-containing groups in organic electrode materials and related improvement strategies.Adv Energy Mater2021;11:2002523

[38]

Lu Y.Prospects of organic electrode materials for practical lithium batteries.Nat Rev Chem2020;4:127-42

[39]

Qin K,Holguin K.Recent advances in developing organic electrode materials for multivalent rechargeable batteries.Energy Environ Sci2020;13:3950-92

[40]

Zhao Q,Zhang C.Sodium-ion storage mechanism in triquinoxalinylene and a strategy for improving electrode stability.Energy Fuels2020;34:5099-105

[41]

Weng J,Zeng X.Recent progress of hexaazatriphenylene-based electrode materials for rechargeable batteries.Catal Today2022;400-1:102-14

[42]

Walczak R,Savateev A.Template- and metal-free synthesis of nitrogen-rich nanoporous “noble” carbon materials by direct pyrolysis of a preorganized hexaazatriphenylene precursor.Angew Chem Int Ed Engl2018;57:10765-70

[43]

Lin Z,Zhang B.Solution-processed nitrogen-rich graphene-like holey conjugated polymer for efficient lithium ion storage.Nano Energy2017;41:117-27

[44]

Li X,Chen H.Dynamic covalent synthesis of crystalline porous graphitic frameworks.Chem2020;6:933-44

[45]

Shehab MK,Huang T,El-Kaderi HM.Exceptional sodium-ion storage by an aza-covalent organic framework for high energy and power density sodium-ion batteries.ACS Appl Mater Interfaces2021;13:15083-91

[46]

Wu M,Sun B.A 2D covalent organic framework as a high-performance cathode material for lithium-ion batteries.Nano Energy2020;70:104498

[47]

Shi R,Lu Y.Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries.Nat Commun2020;11:178 PMCID:PMC6954217

[48]

Chen XL,Zheng ZL.Multiple accessible redox-active sites in a robust covalent organic framework for high-performance potassium storage.J Am Chem Soc2023;145:5105-13

[49]

Zhang S,Ren S.Covalent organic framework with multiple redox active sites for high-performance aqueous calcium ion batteries.J Am Chem Soc2023;145:17309-20

[50]

Wang J,Riduan SN.Nitrogen-linked hexaazatrinaphthylene polymer as cathode material in lithium-ion battery.Chemistry2020;26:2581-5

[51]

Wang W,Cao Z.Phenanthroline covalent organic framework electrodes for high-performance zinc-ion supercapattery.ACS Energy Lett2020;5:2256-64

[52]

Mahmood J,Jung M.Nitrogenated holey two-dimensional structures.Nat Commun2015;6:6486 PMCID:PMC4366516

[53]

Meng L,Ma C.Synthesis of a 2D nitrogen-rich π-conjugated microporous polymer for high performance lithium-ion batteries.Chem Commun2019;55:9491-4

[54]

Xu J,Dou Y.2D frameworks of C2N and C3N as new anode materials for lithium-ion batteries.Adv Mater2017;29:1702007

[55]

Yan J,Cui Y.Engineering microstructure of a robust polymer anode by moderate pyrolysis for high-performance sodium storage.ACS Appl Mater Interfaces2022:49641-9

[56]

Xia S,Yao L.Nitrogen-rich two-dimensional π-conjugated porous covalent quinazoline polymer for lithium storage.Energy Storage Mater2022;50:225-33

[57]

Buyukcakir O,Jiang Y.Synthesis of porous covalent quinazoline networks (CQNs) and their gas sorption properties.Angew Chem Int Ed Engl2019;58:872-6

[58]

Yang Z,Chen H.Surpassing the organic cathode performance for lithium-ion batteries with robust fluorinated covalent quinazoline networks.ACS Energy Lett2021;6:41-51

[59]

Yan J,Xie M,Bin DS.Immobilizing redox-active tricycloquinazoline into a 2D conductive metal-organic framework for lithium storage.Angew Chem Int Ed Engl2021;60:24467-72

[60]

Yang X,Wang K.Ionothermal synthesis of fully conjugated covalent organic frameworks for high-capacity and ultrastable potassium-ion batteries.Adv Mater2022;34:e2207245

[61]

Im YK,Noh HJ.Crystalline porphyrazine-linked fused aromatic networks with high proton conductivity.Angew Chem Int Ed Engl2022;61:e202203250

[62]

Wei WF,Jiang K,Zhuang X.Exploiting reusable edge-functionalized metal-free polyphthalocyanine networks for efficient polymer synthesis at near infrared wavelengths.Angew Chem Int Ed Engl2023;62:e202304608

[63]

Peng P,Huo F.In situ charge exfoliated soluble covalent organic framework directly used for Zn-air flow battery.ACS Nano2019;13:878-84

[64]

Zhang Y,Jiao L,Jiang HL.Conductive covalent organic frameworks of polymetallophthalocyanines as a tunable platform for electrocatalysis.J Am Chem Soc2023;145:24230-9

[65]

Wang Y,Chen T.Pyrazine-linked iron-coordinated tetrapyrrole conjugated organic polymer catalyst with spatially proximate donor-acceptor pairs for oxygen reduction in fuel cells.Angew Chem Int Ed Engl2023;62:e202308070

[66]

Xue Q,Jia D.Solid-phase synthesis porous organic polymer as precursor for Fe/Fe3C-embedded hollow nanoporous carbon for alkaline oxygen reduction reaction.ChemElectroChem2019;6:4491-6

[67]

Wu J,Wang C.Nanostructured conjugated ladder polymers for stable and fast lithium storage anodes with high-capacity.Adv Energy Mater2015;5:1402189

[68]

Fazzi D.Addressing the elusive polaronic nature of multiple redox states in a π-conjugated ladder-type polymer.Adv Elect Mater2021;7:2000786

[69]

Yu J,Wang H,Han D.Conjugated ladder-type polymers with multielectron reactions as high-capacity organic anode materials for lithium-ion batteries.Sci China Mater2022;65:2354-62

[70]

Ma T,Johnson D.Understanding the mechanism of a conjugated ladder polymer as a stable anode for acidic polymer-air batteries.Joule2023;7:2261-73

[71]

Wang M,Naisa C.Poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated covalent organic framework for fast proton storage.Angew Chem Int Ed Engl2023;62:e202310937

[72]

Wang M,Petkov P.Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers.Nat Mater2023;22:880-7 PMCID:PMC10313522

[73]

Noh HJ,Yu SY.Vertical two-dimensional layered fused aromatic ladder structure.Nat Commun2020;11:2021 PMCID:PMC7181601

[74]

Zhang Z,Wang X,Cheng C.Ladder-type π-conjugated metallophthalocyanine covalent organic frameworks with boosted oxygen reduction reaction activity and durability for zinc-air batteries.Chem Eng J2022;435:133872

[75]

Ouyang Z,Zhao Y.Quinone-enriched conjugated microporous polymer as an organic cathode for Li-ion batteries.ACS Appl Mater Interfaces2021;13:9064-73

[76]

Lock PE,Bruno-Colmenárez J.Syntheses, structures and reactivity of metal complexes of trindane, trindene, truxene, decacyclene and related ring systems: manifestations of three-fold symmetry.Molecules2023;28:7796 PMCID:PMC10707772

[77]

Yang X,Dunlap N.A truxenone-based covalent organic framework as an all-solid-state lithium-ion battery cathode with high capacity.Angew Chem Int Ed Engl2020;59:20385-9

[78]

Sprick RS,Scherf U.Acid catalyzed synthesis of carbonyl-functionalized microporous ladder polymers with high surface area.Polym Chem2010;1:283

[79]

Erdtman H.Cyclooligomerisation of quinones.Tetrahedron Lett1970;11:3389-92

[80]

Fritz PW,Ashirov T,Dincă M.Fully conjugated tetraoxa[8]circulene-based porous semiconducting polymers.Angew Chem Int Ed Engl2022;61:e202116527 PMCID:PMC9313886

[81]

Chen F,Shimizu S,Tanaka T.Synthesis of a tetrabenzotetraaza[8]circulene by a “fold-in” oxidative fusion reaction.Angew Chem Int Ed Engl2015;54:10639-42

[82]

Kim J,Heo M.2,3,6,7,10,11-Hexamethoxytriphenylene (HMTP): a new organic cathode material for lithium batteries.Electrochem Commun2012;21:50-3

[83]

Chang Z,Sun Y.A conductive 2D conjugated tetrathia[8]circulene-based nickel metal–organic framework for energy storage.Adv Funct Mater2023;33:2301513

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/