Strategies for enhancing room temperature gas sensing performance of stand-alone transition metal dichalcogenides

Yu Duan , Jiajia Qiu , Shuanglong Feng , Huaping Zhao , Yong Lei

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (3) : 45

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (3) :45 DOI: 10.20517/cs.2024.138
review-article

Strategies for enhancing room temperature gas sensing performance of stand-alone transition metal dichalcogenides

Author information +
History +
PDF

Abstract

Although the development of industry has significantly improved the living standards of human beings, it has also inevitably caused serious pollution of the atmosphere, which has greatly aroused concern about gas detection technology. In recent years, two-dimensional transition metal dichalcogenides (TMDs) have attracted great attention in the field of air sensing due to their excellent adsorption ability for harmful gases at room temperature. However, their inherent performance deficiencies have caused problems with weak sensor responsiveness and long response/recovery times. Research targeting the performance tuning of stand-alone system TMDs is necessary to radically improve the performance of sensors. This review summarizes a series of strategies that researchers have adopted in recent years to improve the performance of stand-alone TMDs materials. Firstly, the application of TMDs materials in gas sensors is described. Then, the methods and mechanisms for enhancing the gas sensing performance of stand-alone TMDs through different strategies are highlighted. Finally, the future development of TMDs gas sensors is summarized and projected.

Keywords

Transition metal dichalcogenides / gas sensors / morphological adjustment / crystal phase modulation / defect introduction

Cite this article

Download citation ▾
Yu Duan, Jiajia Qiu, Shuanglong Feng, Huaping Zhao, Yong Lei. Strategies for enhancing room temperature gas sensing performance of stand-alone transition metal dichalcogenides. Chemical Synthesis, 2025, 5(3): 45 DOI:10.20517/cs.2024.138

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Renzone GD,Mugnaini M,Peruzzi G.Assessment of LoRaWAN transmission systems under temperature and humidity, gas, and vibration aging effects within IIoT contexts.IEEE Trans Instrum Meas2022;71:1-11

[2]

Filipovic L.Application of two-dimensional materials towards CMOS-integrated gas sensors.Nanomaterials2022;12:3651 PMCID:PMC9611560

[3]

Lombardi A,Malcovati P.A CMOS integrated interface circuit for metal-oxide gas sensors.Sens Actuators B2009;142:82-9

[4]

Malcovati P,Baschirotto A.Towards high-dynamic range CMOS integrated interface circuits for gas sensors.Sens Actuators B2013;179:301-12

[5]

Jiang G,Comeau FJE.Free-standing functionalized graphene oxide solid electrolytes in electrochemical gas sensors.Adv Funct Mater2016;26:1729-36

[6]

Xie S,Zhang S,Zhang X.Electro-optical gas sensor based on a planar light-emitting electrochemical cell microarray.Small2010;6:1897-9

[7]

Zhao H,Chen Y.Oxygen plasma-treated graphene oxide surface functionalization for sensitivity enhancement of thin-film piezoelectric acoustic gas sensors.ACS Appl Mater Interfaces2017;9:40774-81

[8]

Kwon B,Lee H.Ultrasensitive N-channel graphene gas sensors by nondestructive molecular doping.ACS Nano2022;16:2176-87

[9]

Zhang C,Liu K,Zheng Z.Metal oxide resistive sensors for carbon dioxide detection.Coord Chem Rev2022;472:214758

[10]

Majhi SM,Kim HW,Kim TW.Recent advances in energy-saving chemiresistive gas sensors: a review.Nano Energy2021;79:105369 PMCID:PMC7494497

[11]

Degler D,Barsan N.Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal-oxide-based gas sensing materials.ACS Sens2019;4:2228-49

[12]

Kim H.Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview.Sens Actuators B2014;192:607-27

[13]

Fang X,Mao S.Metal-organic framework-based sensors for environmental contaminant sensing.Nanomicro Lett2018;10:64 PMCID:PMC6199112

[14]

Hu X,Gong J,Li G.α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties.Adv Mater2007;19:2324-9

[15]

Xu S,Zhao H,Lei Y.Sensitive gas-sensing by creating adsorption active sites: coating an SnO2 layer on triangle arrays.ACS Appl Mater Interfaces2018;10:29092-9

[16]

Xu S,Xu Y,Lei Y.Carrier mobility-dominated gas sensing: a room-temperature gas-sensing mode for SnO2 nanorod array sensors.ACS Appl Mater Interfaces2018;10:13895-902

[17]

Jo YM,Lee JH,Hwang IS.MOF-based chemiresistive gas sensors: toward new functionalities.Adv Mater2023;35:e2206842

[18]

Xie J,Jing S,Liu Q.Chemical and electronic modulation via atomic layer deposition of NiO on porous In2O3 films to boost NO2 detection.ACS Appl Mater Interfaces2021;13:39621-32

[19]

Fu Q,Wang X.2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis.Adv Mater2021;33:e1907818

[20]

Wang L,Jiang L.Transition metal dichalcogenides for sensing and oncotherapy: status, challenges, and perspective.Adv Funct Mater2021;31:2004408

[21]

Wang L,Jiang L.Advanced 2D–2D heterostructures of transition metal dichalcogenides and nitrogen-rich nitrides for solar water generation.Nano Energy2022;98:107192

[22]

Wu X,Zhang J.Recent advances on transition metal dichalcogenides for electrochemical energy conversion.Adv Mater2021;33:e2008376

[23]

Xiao Y,Chen MM,Fu L.Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications.Chem Soc Rev2023;52:1215-72

[24]

Zhao B,Zhang Z.2D metallic transition-metal dichalcogenides: structures, synthesis, properties, and applications.Adv Funct Mater2021;31:2105132

[25]

Lee E,Kim DJ.Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing.ACS Sens2018;3:2045-60

[26]

Annanouch FE,Umek P,Bittencourt C.Controlled growth of 3D assemblies of edge enriched multilayer MoS2 nanosheets for dually selective NH3 and NO2 gas sensors.J Mater Chem C2022;10:11027-39

[27]

Singh S.Temperature dependent selective detection of ethanol and methanol using MoS2/TiO2 composite.Sens Actuators B2022;350:130798

[28]

Tang SY,Su TY.Design of core-shell quantum dots-3D WS2 nanowall hybrid nanostructures with high-performance bifunctional sensing applications.ACS Nano2020;14:12668-78

[29]

Zhou Q,Sun T,Lv Y.Cataluminescence on 2D WS2 nanosheets surface for H2S sensing.Sens Actuators B2022;353:131111

[30]

Zheng W,Xie J,Zhang J.Emerging van der Waals junctions based on TMDs materials for advanced gas sensors.Coord Chem Rev2021;447:214151

[31]

Jariwala D,Lauhon LJ,Hersam MC.Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides.ACS Nano2014;8:1102-20

[32]

Prabhu P,Lee J.Design strategies for development of TMD-based heterostructures in electrochemical energy systems.Matter2020;2:526-53

[33]

Radisavljevic B,Brivio J,Kis A.Single-layer MoS2 transistors.Nat Nanotechnol2011;6:147-50

[34]

Wang H,Lin Y.Electronic modulation of non-van der Waals 2D electrocatalysts for efficient energy conversion.Adv Mater2021;33:2008422

[35]

Zhang Y,Sendeku MG.Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures.Adv Mater2019;31:e1901694

[36]

Huang Y,Yang R.Universal mechanical exfoliation of large-area 2D crystals.Nat Commun2020;11:2453 PMCID:PMC7228924

[37]

Xing L,Wu Z.3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption.Chem Eng J2020;379:122241

[38]

Schmidt H,Eda G.Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects.Chem Soc Rev2015;44:7715-36

[39]

Yue Q,Chang S.Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field.Nanoscale Res Lett2013;8:425 PMCID:PMC4015638

[40]

Bui VQ,Le DA,Le HM.A first-principles investigation of various gas (CO, H2O, NO, and O2) absorptions on a WS2 monolayer: stability and electronic properties.J Phys Condens Matter2015;27:305005

[41]

Wang T,Zhao X,Dai X.Tunable donor and acceptor impurity states in a WSe2 monolayer by adsorption of common gas molecules.RSC Adv2016;6:82793-800

[42]

Lin L,Dong Z,Han L.DFT study on the adsorption of CO, NO2, SO2 and NH3 by Te vacancy and metal atom doped MoTe2 monolayers.Physica E2023;145:115489

[43]

Castellanos-Gomez A,Steele GA,Agraït N.Elastic properties of freely suspended MoS2 nanosheets.Adv Mater2012;24:772-5

[44]

Wang X,Tian F.From the surface reaction control to gas-diffusion control: the synthesis of gierarchical porous SnO2 microspheres and their gas-sensing mechanism.J Phys Chem C2015;119:15963-76

[45]

Zhao Y,Gu Q.Noble metal-free 2D 1T-MoS2 edge sites boosting selective hydrogenation of maleic anhydride.ACS Catal2022;12:8986-94

[46]

Wang Z,Xu H.Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites.Nano Energy2018;49:634-43

[47]

Xu T,Pei Y.The ultra-high NO2 response of ultra-thin WS2 nanosheets synthesized by hydrothermal and calcination processes.Sens Actuators B2018;259:789-96

[48]

Duan Y,Zhang K,Zhang S.Vertical few-layer WSe2 nanosheets for NO2 sensing.ACS Appl Nano Mater2021;4:12043-50

[49]

Hu B,Bai Z.Regulating MoS2 edge site for photocatalytic nitrogen fixation: a theoretical and experimental study.Chem Eng J2022;442:136211

[50]

Zhuang M,Gan L.Sub-5 nm edge-rich 1T’-ReSe2 as bifunctional materials for hydrogen evolution and sodium-ion storage.Nano Energy2019;58:660-8

[51]

Zavala-Sanchez L,Oliviero L,Maugé F.Structure and quantification of edge sites of WS2/Al2O3 catalysts coupling IR/CO spectroscopy and DFT calculations.ChemCatChem2020;12:2066-76

[52]

Kumar A,Gutal AP.Growth and NO2 gas sensing mechanisms of vertically aligned 2D SnS2 flakes by CVD: experimental and DFT studies.Sens Actuators B2022;353:131078

[53]

Bisht P,Ghosh A.Tailoring the vertical and planar growth of 2D WS2 thin films using pulsed laser deposition for enhanced gas sensing properties.ACS Appl Mater Interfaces2022;14:36789-800

[54]

Alagh A,Sierra-Castillo A,Colomer JF.Three-dimensional assemblies of edge-enriched WSe2 nanoflowers for selectively detecting ammonia or nitrogen dioxide.ACS Appl Mater Interfaces2022;14:54946-60

[55]

Zhou Q,Zheng C.Nanoporous functionalized WS2/MWCNTs nanocomposite for trimethylamine detection based on quartz crystal microbalance gas sensor.ACS Appl Mater Interfaces2021;13:41339-50

[56]

Xu Y,Zhang Y.Edge-enriched WS2 nanosheets on carbon nanofibers boosts NO2 detection at room temperature.J Hazard Mater2021;411:125120

[57]

Alagh A,Umek P.CVD growth of self-assembled 2D and 1D WS2 nanomaterials for the ultrasensitive detection of NO2.Sens Actuators B2021;326:128813

[58]

Liu D,Zhang Z.Comparative study on NO2 and H2S sensing mechanisms of gas sensors based on WS2 nanosheets.Sens Actuators B2020;303:127114

[59]

Li Y,Li Y.Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors.Sens Actuators B2019;282:259-67

[60]

Koo WT,Jung JW.Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: abundant WS2 edges for highly sensitive gas sensors.Adv Funct Mater2018;28:1802575

[61]

Cho SY,Lee Y.Highly enhanced gas adsorption properties in vertically aligned MoS2 layers.ACS Nano2015;9:9314-21

[62]

Cho D,Lee YL.Ultrathin copper monosulfide films for an optically semitransparent, highly selective ammonia chemosensor.ACS Appl Mater Interfaces2024;16:60530-40

[63]

Kim YB,Kim DS.Progressive NO2 sensors with rapid alarm and persistent memory-type responses for wide-range sensing using antimony triselenide nanoflakes.Adv Funct Mater2021;31:2102439

[64]

Hu Z,Hernández-Martínez PL.Interfacial charge and energy transfer in van der Waals heterojunctions.InfoMat2022;4:e12290

[65]

Choi MS,Ngo TD.Recent progress in 1D contacts for 2D-material-based devices.Adv Mater2022;34:2202408

[66]

Chung Y,Lee J,Wu JM.Coupling effect of piezo–flexocatalytic hydrogen evolution with hybrid 1T- and 2H-phase few-layered MoSe2 nanosheets.Adv Energy Mater2020;10:2002082

[67]

Liu L,Wu L.Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers.Nat Mater2018;17:1108-14

[68]

Sokolikova MS.Direct synthesis of metastable phases of 2D transition metal dichalcogenides.Chem Soc Rev2020;49:3952-80

[69]

Yoo Y,Su Y,Johns JE.In-plane 2H-1T’ MoTe2 homojunctions synthesized by flux-controlled phase engineering.Adv Mater2017;29:1605461

[70]

Voiry D,Chhowalla M.Phase engineering of transition metal dichalcogenides.Chem Soc Rev2015;44:2702-12

[71]

Wang QH,Kis A,Strano MS.Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.Nat Nanotechnol2012;7:699-712

[72]

Wang L,Luo J.Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution.Angew Chem Int Ed Engl2017;56:7610-4

[73]

Eda G,Yamaguchi H,Chen M.Coherent atomic and electronic heterostructures of single-layer MoS2.ACS Nano2012;6:7311-7

[74]

Gan X,Quan X.Two-dimensional MoS2: a promising building block for biosensors.Biosens Bioelectron2017;89:56-71

[75]

Mak KF,Hone J,Heinz TF.Atomically thin MoS2: a new direct-gap semiconductor.Phys Rev Lett2010;105:136805

[76]

Gao G,Ma F,Waclawik E.Charge mediated semiconducting-to-metallic phase transition in molybdenum disulfide monolayer and hydrogen evolution reaction in new 1T’ phase.J Phys Chem C2015;119:13124-8

[77]

Huang H,Li Q.Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting.Nano Energy2016;26:172-9

[78]

Wang D,Bao S,Fei H.Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution.J Mater Chem A2017;5:2681-8

[79]

Kappera R,Yalcin SE.Phase-engineered low-resistance contacts for ultrathin MoS2 transistors.Nat Mater2014;13:1128-34

[80]

Acerce M,Chhowalla M.Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials.Nat Nanotechnol2015;10:313-8

[81]

Deng Q,Si H.Strong band bowing effects and distinctive optoelectronic properties of 2H and 1T’ phase-tunable MoxRe1-xS2 alloys.Adv Funct Mater2020;30:2003264

[82]

Lai Z,Li S.Salt-assisted 2H-to-1T’ phase transformation of transition metal dichalcogenides.Adv Mater2022;34:e2201194

[83]

Yu Y,He Q.High phase-purity 1T’-MoS2- and 1T’-MoSe2-layered crystals.Nat Chem2018;10:638-43

[84]

He H,Huang D.Harnessing plasma-assisted doping engineering to stabilize metallic phase MoSe2 for fast and durable sodium-ion storage.Adv Mater2022;34:e2200397

[85]

Wang S,Li B.Ultrastable in-plane 1T–2H MoS2 heterostructures for enhanced hydrogen evolution reaction.Adv Energy Mater2018;8:1801345

[86]

Duan Y,Yu Y,Feng S.Facile microwave plasma driven 3D-WSe2 2H-1T phase modulation for improving NO2 gas sensing performance.Sens Actuators B2023;387:133822

[87]

Duan Y,Zhang S,Qiu J.Multi-strategy coordination enables WSe2 to achieve high-performance real-world detection of NO2.Sens Actuators B2024;403:135183

[88]

Chen Y,Su T,Chen P.Phase-modulated 3D-hierarchical 1T/2H WSe2 nanoscrews by a plasma-assisted selenization process as high performance NO gas sensors with a ppb-level detection limit.J Mater Chem A2019;7:22314-22

[89]

Zong B,Chen X.Highly enhanced gas sensing performance using a 1T/2H Heterophase MoS2 field-effect transistor at room temperature.ACS Appl Mater Interfaces2020;12:50610-8

[90]

Park S,Park SO.Phase engineering of transition metal dichalcogenides with unprecedentedly high phase purity, stability, and scalability via molten-metal-assisted intercalation.Adv Mater2020;32:e2001889

[91]

Zhu J,Yu H.Argon plasma induced phase transition in monolayer MoS2.J Am Chem Soc2017;139:10216-9

[92]

Liu F,Tang X.Phase engineering and alkali cation stabilization for 1T molybdenum dichalcogenides monolayers.Adv Funct Mater2022;32:2204601

[93]

Chhowalla M,Eda G,Loh KP.The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets.Nat Chem2013;5:263-75

[94]

Tan Y,Chen L.Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production.Adv Mater2014;26:8023-8

[95]

Liu Y,Li Z.Vacancy engineering for tuning electron and phonon structures of two-dimensional materials.Adv Energy Mater2016;6:1600436

[96]

Yuan H,Yuan J.ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing.Adv Mater2019;31:1807161

[97]

Lu Q,Ma Q,Zhang H.2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions.Adv Mater2016;28:1917-33

[98]

Jia Y,Wang H.The role of defect sites in nanomaterials for electrocatalytic energy conversion.Chem2019;5:1371-97

[99]

Wang X,Zhang Y.Vacancy defects in 2D transition metal dichalcogenide electrocatalysts: from aggregated to atomic configuration.Adv Mater2023;35:e2206576

[100]

Li F.NO-sensing performance of vacancy defective monolayer MoS2 predicted by density function theory.Appl Surf Sci2018;434:294-306

[101]

Ma D,Lu Z.Interaction between H2O, N2, CO, NO, NO2 and N2O molecules and a defective WSe2 monolayer.Phys Chem Chem Phys2017;19:26022-33

[102]

Cui Z,Shen Y.Toxic gas molecules adsorbed on intrinsic and defective WS2: gas sensing and detection.Appl Surf Sci2023;613:155978

[103]

Qin Z,Yue H.Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation.Sens Actuators B2018;262:771-9

[104]

Qin Z,Wang J.Development of flexible paper substrate sensor based on 2D WS2 with S defects for room-temperature NH3 gas sensing.Appl Surf Sci2022;573:151535

[105]

Mao S,Pu H.Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing.Chem Soc Rev2017;46:6872-904

[106]

Meng Z,Mendecki L.Electrically-transduced chemical sensors based on two-dimensional nanomaterials.Chem Rev2019;119:478-598

[107]

Minh Triet N,Hwang BU.High-performance schottky diode gas sensor based on the heterojunction of three-dimensional nanohybrids of reduced graphene oxide-vertical ZnO nanorods on an AlGaN/GaN layer.ACS Appl Mater Interfaces2017;9:30722-32

[108]

Jeong SY,Lee JH.Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction.Adv Mater2020;32:e2002075

[109]

Ghosh K.MXene and MoS3-x coated 3D-printed hybrid electrode for solid-state asymmetric supercapacitor.Small Methods2021;5:e2100451

[110]

Thakkar H,Al-Naddaf Q,Rezaei F.3D-printed metal-organic framework monoliths for gas adsorption processes.ACS Appl Mater Interfaces2017;9:35908-16

[111]

Liu C,Zhang B.Local Gaussian process regression with small sample data for temperature and humidity compensation of polyaniline-cerium dioxide NH3 sensor.Sens Actuators B2023;378:133113

[112]

Ma XH,Kweon SH,Lee JH.Highly sensitive and selective PbTiO3 gas sensors with negligible humidity interference in ambient atmosphere.ACS Appl Mater Interfaces2019;11:5240-6

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/