Up-conversion effect boosted NIR-driven photocatalytic solar fuel generation of NaYF4: Yb, Er decorated ZnIn2S4 flowers with rich Zn vacancies

Xuejing Li , Haiyue Wu , Shengyan Yin , Chenhao Yu , Yongzhi Shao , Donglei Zhou , Ping She

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (2) : 29

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (2) :29 DOI: 10.20517/cs.2024.127
review-article

Up-conversion effect boosted NIR-driven photocatalytic solar fuel generation of NaYF4: Yb, Er decorated ZnIn2S4 flowers with rich Zn vacancies

Author information +
History +
PDF

Abstract

Photocatalytic CO2 reduction for solar fuel generation is a promising approach to alleviating the environmental and energy crisis. Herein, a flower-like composite was obtained by assembling Zn vacancy-rich ZnIn2S4 (VZn-ZIS) with up-conversion nanoparticles (UCNPs, NaYF4: Yb, Er). Specifically, the optimized UCNPs@VZn-ZIS demonstrates superior CO generation of 32.57 μmol/g in the near-infrared (NIR)-driven photocatalytic CO2 reduction process within 8 h. Fortunately, the performance of photocatalytic CO2 reduction based on optimized UCNPs@VZn-ZIS is superior to most reported photocatalysts under NIR irradiation. The enhanced photocatalytic CO2 reduction activity is attributed to the extended light absorption, enhanced charge separation, and improved CO2 activation of the surface vacancy. The work presented here provides a facile approach to developing novel broad spectral responsive photocatalytic CO2 reduction photocatalysts, which hold great potential for solar fuel generation in future applications.

Keywords

Photocatalysis / ZnIn2S4 (ZIS) / up-conversion / vacancies / CO2 reduction

Cite this article

Download citation ▾
Xuejing Li, Haiyue Wu, Shengyan Yin, Chenhao Yu, Yongzhi Shao, Donglei Zhou, Ping She. Up-conversion effect boosted NIR-driven photocatalytic solar fuel generation of NaYF4: Yb, Er decorated ZnIn2S4 flowers with rich Zn vacancies. Chemical Synthesis, 2025, 5(2): 29 DOI:10.20517/cs.2024.127

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Achakulwisut P,Guivarch C,Brutschin E.Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions.Nat Commun2023;14:5425 PMCID:PMC10499994

[2]

air for a sustainable world.Nat Commun2021;12:5824 PMCID:PMC8490423

[3]

Fang S,Bharti J.Photocatalytic CO2 reduction.Nat Rev Methods Primers2023;3:243

[4]

Albero J,García H.Photocatalytic CO2 reduction to C2+ products.ACS Catal2020;10:5734-49

[5]

Bhanderi D,Modi CK.Graphitic carbon nitride (g-C3N4) as an emerging photocatalyst for sustainable environmental applications: a comprehensive review.RSC Sustain2024;2:265-87

[6]

Yang R,Fan Y.ZnIn2S4-based photocatalysts for energy and environmental applications.Small Methods2021;5:e2100887

[7]

Li Z,Zuo C.Application of nanostructured TiO2 in UV photodetectors: a review.Adv Mater2022;34:e2109083

[8]

Yang MQ,Hong M.Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production.Adv Mater2018;30:e1802894

[9]

Han C,Liang Y.Near-infrared light-driven photocatalysis with an emphasis on two-photon excitation: concepts, materials, and applications.Adv Mater2024;36:e2307759

[10]

Xu M,Meng D.Modulation of sulfur vacancies in ZnIn2S4/MXene Schottky heterojunction photocatalyst promotes hydrogen evolution.Adv Funct Mater2024;34:2402330

[11]

Peng H,Han J.Defective ZnIn2S4 nanosheets for visible-light and sacrificial-agent-free H2O2 photosynthesis via O2/H2O redox.J Am Chem Soc2023;145:27757-66

[12]

Sun L,Kong T,Tang H.Fast charge transfer kinetics in an inorganic–organic S-scheme heterojunction photocatalyst for cooperative hydrogen evolution and furfuryl alcohol upgrading.J Mater Chem A2022;10:22531-9

[13]

Qiu B,Lian C.Realization of all-in-one hydrogen-evolving photocatalysts via selective atomic substitution.Appl Catal B Environ2021;298:120518

[14]

Tian Q,Wu W.Efficient UV–Vis-NIR responsive upconversion and plasmonic-enhanced photocatalyst based on lanthanide-doped NaYF4/SnO2/Ag.ACS Sustainable Chem Eng2017;5:10889-99

[15]

Huang H,Wang Z.Bi20TiO32 nanoparticles doped with Yb3+ and Er3+ as UV, visible, and near-infrared responsive photocatalysts.ACS Appl Nano Mater2019;2:5381-8

[16]

Xie J,Lu Z.Up-conversion effect boosted the photocatalytic CO2 reduction activity of Z-scheme CPDs/BiOBr heterojunction.Inorg Chem Front2023;10:5127-35

[17]

Wen S,Zheng K,Liu X.Advances in highly doped upconversion nanoparticles.Nat Commun2018;9:2415 PMCID:PMC6010470

[18]

Yu M,Mahmoud Idris A.Upconversion nanoparticles coupled with hierarchical ZnIn2S4 nanorods as a near-infrared responsive photocatalyst for photocatalytic CO2 reduction.J Colloid Interface Sci2022;612:782-91

[19]

Hou Z,Deng K.UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway.ACS Nano2015;9:2584-99

[20]

Nie Z,Li D.NaYF4:Yb,Er,Nd@NaYF4:Nd upconversion nanocrystals capped with Mn:TiO2 for 808 nm NIR-triggered photocatalytic applications.J Phys Chem C2019;123:22959-70

[21]

Karami A,de Prinse TJ.Facile multistep synthesis of ZnO-coated β-NaYF4:Yb/Tm upconversion nanoparticles as an antimicrobial photodynamic therapy for persistent Staphylococcus aureus small colony variants.ACS Appl Bio Mater2021;4:6125-36

[22]

Liu Q,Li M,Li L.Heterostructures made of upconversion nanoparticles and metal-organic frameworks for biomedical applications.Adv Sci2022;9:e2103911 PMCID:PMC8787403

[23]

Cheng Q,Xiao L.Unraveling the influence of oxygen vacancy concentration on electrocatalytic CO2 reduction to formate over indium oxide catalysts.ACS Catal2023;13:4021-9

[24]

Peng C,Zhang J.Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol.Nat Commun2021;12:1580 PMCID:PMC7952561

[25]

Zhang K,Yang J.Surface energy mediated sulfur vacancy of ZnIn2S4 atomic layers for photocatalytic H2O2 production.Adv Funct Mater2023;33:2302964

[26]

He Y,Song K.3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction.Adv Funct Mater2019;29:1905153

[27]

Nie Y,Zhou W.Understanding the role of Zn vacancy induced by sulfhydryl coordination for photocatalytic CO2 reduction on ZnIn2S4.J Mater Chem A2023;11:1793-800

[28]

Zhang G,Chen D.A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application.Green Energy Environ2022;7:176-204

[29]

Ouyang C,Chen ZA.Intercalation- and vacancy-enhanced internal electric fields in ZnIn2S4 for highly efficient photocatalytic H2O2 production.J Phys Chem C2023;127:20683-99

[30]

Zhang Z,Feng Z,Dong B.Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic H2 production based on photoinduced interfacial charge transfer.Sci Rep2016;6:19221 PMCID:PMC4709776

[31]

Xin Z,Hu J.Construction of hollow Co3O4@ZnIn2S4 p-n heterojunctions for highly efficient photocatalytic hydrogen production.Nanomaterials2023;13:758 PMCID:PMC9960535

[32]

Qiu H,Ohulchanskyy TY,Chen G.Recent progress in upconversion photodynamic therapy.Nanomaterials2018;8:344 PMCID:PMC5977358

[33]

Si S,Mao Y.Low-coordination single Au atoms on ultrathin ZnIn2S4 nanosheets for selective photocatalytic CO2 reduction towards CH4.Angew Chem Int Ed Engl2022;61:e202209446

[34]

Chong WK,Lee YJ.Self-activated superhydrophilic green ZnIn2S4 realizing solar-driven overall water splitting: close-to-unity stability for a full daytime.Nat Commun2023;14:7676 PMCID:PMC10667227

[35]

Xu B,Chong B,Yan X.Zn vacancy-tailoring mediated ZnIn2S4 nanosheets with accelerated orderly charge flow for boosting photocatalytic hydrogen evolution.Chem Eng Sci2023;270:118533

[36]

Liang L,Zhang J.Efficient infrared light induced CO2 reduction with nearly 100% CO selectivity enabled by metallic CoN porous atomic layers.Nano Energy2020;69:104421

[37]

Ye L,Jin X.Synthesis of olive-green few-layered BiOI for efficient photoreduction of CO2 into solar fuels under visible/near-infrared light.Sol Energ Mat Sol C2016;144:732-9

[38]

Kong XY,Ng B,Mohamed AR.Harnessing Vis–NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets.Nano Res2017;10:1720-31

[39]

Liang L,Sun Y.Infrared light-driven CO2 overall splitting at room temperature.Joule2018;2:1004-16

[40]

Ji X,Tang J.Construction of full solar-spectrum-driven Cu2-xS/Ni-Al-LDH heterostructures for efficient photocatalytic CO2 reduction.ACS Appl Energy Mater2022;5:2862-72

[41]

Wang F,Wu J,Duan L.Construction of 2D/3D g-C3N4/ZnIn2S4 heterojunction for efficient photocatalytic reduction of CO2 under visible light.Ind Eng Chem Res2023;62:15907-18

[42]

Ji J,Zhang H.Highly selective photocatalytic reduction of CO2 to ethane over Au-O-Ce sites at micro-interface.Appl Catal B Environ2023;321:122020

[43]

Hu T,Guo L,Liu F.Construction of built-in electric field in TiO2@Ti2O3 core-shell heterojunctions toward optimized photocatalytic performance.Nanomaterials2023;13:2125 PMCID:PMC10386241

[44]

Ouyang C,Zhang C.Direct Z-scheme ZnIn2S4@MoO3 heterojunction for efficient photodegradation of tetracycline hydrochloride under visible light irradiation.Chem Eng J2021;424:130510

[45]

Böke JS,Krafft C.Optical photothermal infrared spectroscopy with simultaneously acquired Raman spectroscopy for two-dimensional microplastic identification.Sci Rep2022;12:18785 PMCID:PMC9637219

[46]

Wang L,Zhang L.In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction.Small2021;17:e2103447

[47]

Shangguan W,Wang Y.Molecular-level insight into photocatalytic CO2 reduction with H2O over Au nanoparticles by interband transitions.Nat Commun2022;13:3894 PMCID:PMC9259601

[48]

Wang B,Liu G.Excited electron-rich Bi(3-x)+ sites: a quantum well-like structure for highly promoted selective photocatalytic CO2 reduction performance.Adv Funct Mater2022;32:2202885

[49]

Pogorelov V,Pitsevich G.From clusters to condensed phase - FT IR studies of water.J Mol Liq2017;235:7-10

[50]

Ran L,Ran B.Engineering single-atom active sites on covalent organic frameworks for boosting CO2 photoreduction.J Am Chem Soc2022;144:17097-109

[51]

Ma Y,Xie G.Isolated Cu sites in CdS hollow nanocubes with doping-location-dependent performance for photocatalytic CO2 reduction.ACS Catal2024;14:1468-79

[52]

Zhang J,Wang J,Xie Y.NaYF4:Yb,Er@NaYF4:Yb,Tm and NaYF4:Yb,Tm@NaYF4:Yb,Er core@shell upconversion nanoparticles embedded in acrylamide hydrogels for anti-counterfeiting and information encryption.ACS Appl Nano Mater2022;5:16642-54

[53]

Chen G,Prasad PN.Upconversion nanoparticles: design, nanochemistry, and applications in theranostics.Chem Rev2014;114:5161-214 PMCID:PMC4039352

[54]

Ansari AA,Khan A.Biocompatible NaYF4:Yb,Er upconversion nanoparticles: colloidal stability and optical properties.J Saudi Chem Soc2021;25:101390

[55]

Giang LTK,Marciniak L,Minh LQ.Fabrication and characterization of up-converting β-NaYF4:Er3+,Yb3+@NaYF4 core-shell nanoparticles for temperature sensing applications.Sci Rep2020;10:14672 PMCID:PMC7474078

AI Summary AI Mindmap
PDF

35

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/