Solid-state NMR of active sites in TiO2 photocatalysis: a critical review

Ningdong Feng , Jun Xu , Feng Deng

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (3) : 43

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (3) :43 DOI: 10.20517/cs.2024.12
review-article

Solid-state NMR of active sites in TiO2 photocatalysis: a critical review

Author information +
History +
PDF

Abstract

Titanium dioxide (TiO2) is one of the optimal semiconductor metal oxide photocatalysts with a wide range of application fields, such as heterogeneous catalysis, energy science, and environmental science. Solid-state nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for characterizing both structure and dynamics at an atomic-molecular level in heterogeneous catalysts. In this review, we first provide a brief discussion on the progress in investigating the structures of titanium and oxygen in bulk and on the surface of TiO2 by using various solid-state NMR techniques. Advances in the understanding of electronic structure and properties of TiO2 with distinct surface features, including various crystal facets and heteroatomic adsorption by chemical probe-assisted NMR techniques, are secondly presented. The solid-state NMR characterization of heteroatom active sites (such as 13C, 15N, 11B, 27Al) and their function in TiO2 photocatalysts is described in detail. Finally, a critical discourse assesses the current limitations and prospects of solid-state NMR in its application to the optimization and design of advanced TiO2 photocatalysts.

Keywords

Characterization / solid-state NMR / TiO2 / photocatalyst / active sites

Cite this article

Download citation ▾
Ningdong Feng, Jun Xu, Feng Deng. Solid-state NMR of active sites in TiO2 photocatalysis: a critical review. Chemical Synthesis, 2024, 4(3): 43 DOI:10.20517/cs.2024.12

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ruan X,Huang C,Cui X.Catalyzing artificial photosynthesis with TiO2 heterostructures and hybrids: emerging trends in a classical yet contemporary photocatalyst.Adv Mater2024;36:e2305285

[2]

Fujishima A.Electrochemical photolysis of water at a semiconductor electrode.Nature1972;238:37-8

[3]

Tang R,Zhang Z,Huang J.Engineering nanostructure-interface of photoanode materials toward photoelectrochemical water oxidation.Adv Mater2021;33:e2005389

[4]

Warnan J.Synthetic organic design for solar fuel systems.Angew Chem Int Ed Engl2020;59:17344-54 PMCID:PMC7540450

[5]

Wang Z,Li R.Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production.Joule2021;5:344-59

[6]

Ismail AA.Photochemical splitting of water for hydrogen production by photocatalysis: a review.Sol Energy Mater Sol Cells2014;128:85-101

[7]

Rawool SA,Polshettiwar V.Defective TiO2 for photocatalytic CO2 conversion to fuels and chemicals.Chem Sci2021;12:4267-99 PMCID:PMC8179507

[8]

Morikawa T,Sekizawa K,Arai T.Solar-driven CO2 reduction using a semiconductor/molecule hybrid photosystem: from photocatalysts to a monolithic artificial leaf.Acc Chem Res2022;55:933-43

[9]

Li Y,Li D.Recent progress on photocatalytic CO2 conversion reactions over plasmonic metal-based catalysts.ACS Catal2023;13:10177-204

[10]

Lin Z,Xu W.The effects of water, substrate, and intermediate adsorption on the photocatalytic decomposition of air pollutants over nano-TiO2 photocatalysts.Phys Chem Chem Phys2024;26:662-78

[11]

Wu H,Wang S.Recent advances of semiconductor photocatalysis for water pollutant treatment: mechanisms, materials and applications.Phys Chem Chem Phys2023;25:25899-924

[12]

Linsebigler AL,Yates JT.Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results.Chem Rev1995;95:735-58

[13]

Chen LX,Jäger W,Thurnauer MC.X-ray absorption reveals surface structure of titanium dioxide nanoparticles.J Synchrotron Radiat1999;6:445-7

[14]

Selloni A.Crystal growth: anatase shows its reactive side.Nat Mater2008;7:613-5

[15]

Pan J,Lu GQ.On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals.Angew Chem Int Ed Engl2011;50:2133-7

[16]

Yang HG,Qiao SZ.Anatase TiO2 single crystals with a large percentage of reactive facets.Nature2008;453:638-41

[17]

Feng N,Song H.Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2.Nat Commun2021;12:4652 PMCID:PMC8329221

[18]

Yu J,Zhao Q.Effect of film thickness on the grain size and photocatalytic activity of the sol-gel derived nanometer TiO2 thin films.J Mater Sci Lett2000;19:1015-7

[19]

Zhu J,Zhao C.A comprehensive review on semiconductor-based photocatalysts toward the degradation of persistent pesticides.Nano Res2023;16:6402-43

[20]

Chen F,Zhang T,Huang H.Atomic-level charge separation strategies in semiconductor-based photocatalysts.Adv Mater2021;33:e2005256

[21]

Wang H,He X,Zhang X.An excitonic perspective on low-dimensional semiconductors for photocatalysis.J Am Chem Soc2020;142:14007-22

[22]

Liu N,Freitag D.Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation.Nano Lett2014;14:3309-13

[23]

Wang F,Gautam A,Amal R.Exploring the origin of enhanced activity and reaction pathway for photocatalytic H2 production on Au/B-TiO2 catalysts.ACS Catal2014;4:1451-7

[24]

Asahi R,Ohwaki T,Taga Y.Visible-light photocatalysis in nitrogen-doped titanium oxides.Science2001;293:269-71

[25]

Chen S, Hu YH. Color TiO2 materials as emerging catalysts for visible-NIR light photocatalysis, a review. Catal Rev 2023.

[26]

Li X,Liu S,Fan J.Effects of fluorine on photocatalysis.Chin J Catal2020;41:1451-67

[27]

Peiris S,Ranasinghe KN,Perera IR.Recent development and future prospects of TiO2 photocatalysis.J Chin Chem Soc2021;68:738-69

[28]

Xiu Z,Zhao T.Recent advances in Ti3+ self-doped nanostructured TiO2 visible light photocatalysts for environmental and energy applications.Chem Eng J2020;382:123011

[29]

Medhi R,Lee TR.Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications.ACS Appl Nano Mater2020;3:6156-85

[30]

Kovačič Ž,Huš M.Photocatalytic CO2 reduction: a review of ab initio mechanism, kinetics, and multiscale modeling simulations.ACS Catal2020;10:14984-5007

[31]

Wu S,Hu YH.Strategies of tuning catalysts for efficient photodegradation of antibiotics in water environments: a review.J Mater Chem A2021;9:2592-611

[32]

Rahman MZ,Zhang H.Key strategies for enhancing H2 production in transition metal oxide based photocatalysts.Angew Chem Int Ed Engl2023;62:e202305385

[33]

Chakhtouna H,Zari N,Bouhfid R.Recent progress on Ag/TiO2 photocatalysts: photocatalytic and bactericidal behaviors.Environ Sci Pollut Res Int2021;28:44638-66 PMCID:PMC8249049

[34]

Li X,Song T,Wang X.A review of the photocatalytic degradation of organic pollutants in water by modified TiO2.Water Sci Technol2023;88:1495-507

[35]

Yao S,Gao F.Highly selective semiconductor photocatalysis for CO2 reduction.J Mater Chem A2023;11:12539-58

[36]

Lee D,Danish M.State-of-the-art review on photocatalysis for efficient wastewater treatment: attractive approach in photocatalyst design and parameters affecting the photocatalytic degradation.Catal Commun2023;183:106764

[37]

Lin S,Ma T.Photocatalytic oxygen evolution from water splitting.Adv Sci2020;8:2002458 PMCID:PMC7788637

[38]

Cao Y,Tu Y.Modification of TiO2 nanoparticles with organodiboron molecules inducing stable surface Ti3+ complex.iScience2019;20:195-204 PMCID:PMC6833477

[39]

Jung D,Berkson ZJ.A molecular cross-linking approach for hybrid metal oxides.Nat Mater2018;17:341-8

[40]

Kowalska E,Wei Z.Hybrid photocatalysts composed of titania modified with plasmonic nanoparticles and ruthenium complexes for decomposition of organic compounds.Appl Catal B Environ2015;178:133-43

[41]

Rengifo-herrera JA,Wist J,Pizzio LR.TiO2 modified with polyoxotungstates should induce visible-light absorption and high photocatalytic activity through the formation of surface complexes.Appl Catal B Environ2016;189:99-109

[42]

Liu F,Wang Q.Transfer channel of photoinduced holes on a TiO2 surface as revealed by solid-state nuclear magnetic resonance and electron spin resonance spectroscopy.J Am Chem Soc2017;139:10020-8

[43]

Jaeger CD.Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems.J Phys Chem1979;83:3146-52

[44]

Nosaka Y,Yawata K,Nosaka AY.Photocatalytic ˙OH radical formation in TiO2 aqueous suspension studied by several detection methods.Phys Chem Chem Phys2003;5:4731-5

[45]

Liu G,Wang X.Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN.J Am Chem Soc2009;131:12868-9

[46]

Ishibashi K,Watanabe T.Quantum yields of active oxidative species formed on TiO2 photocatalyst.J Photoch Photobio A2000;134:139-42

[47]

Guan H,Qiao B.Catalytically active Rh sub-nanoclusters on TiO2 for CO oxidation at cryogenic temperatures.Angew Chem Int Ed Engl2016;55:2820-4

[48]

Wu N,Tafen de N.Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts.J Am Chem Soc2010;132:6679-85 PMCID:PMC2878616

[49]

Micic OI,Cromack KR,Thurnauer MC.Trapped holes on titania colloids studied by electron paramagnetic resonance.J Phys Chem1993;97:7277-83

[50]

Yang L,Wang Q,Xu J.Surface water loading on titanium dioxide modulates photocatalytic water splitting.Cell Rep Phys Sci2020;1:100013

[51]

Yuan W,Fang K.In situ manipulation of the active Au-TiO2 interface with atomic precision during CO oxidation.Science2021;371:517-21

[52]

Song S,Li L.A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen.Nat Catal2021;4:1032-42

[53]

Monai M,Melcherts AEM.Restructuring of titanium oxide overlayers over nickel nanoparticles during catalysis.Science2023;380:644-51

[54]

Xu M,Xu Y.Boosting CO hydrogenation towards C2+ hydrocarbons over interfacial TiO2-x/Ni catalysts.Nat Commun2022;13:6720 PMCID:PMC9640681

[55]

Wei J,Liu JL.In situ raman monitoring and manipulating of interfacial hydrogen spillover by precise fabrication of Au/TiO2/Pt sandwich structures.Angew Chem Int Ed Engl2020;59:10343-7

[56]

Zhu K,Jiang M.Modulating Ti t2g orbital occupancy in a Cu/TiO2 composite for selective photocatalytic CO2 reduction to CO.Angew Chem Int Ed Engl2022;61:e202207600

[57]

Balajka J,DeBenedetti WJI.High-affinity adsorption leads to molecularly ordered interfaces on TiO2 in air and solution.Science2018;361:786-9

[58]

Guo Y,Zeng B.Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst.Nat Commun2022;13:2648 PMCID:PMC9098498

[59]

Chen Y,Cazorla C.Facet-engineered TiO2 drives photocatalytic activity and stability of supported noble metal clusters during H2 evolution.Nat Commun2023;14:6165 PMCID:PMC10547715

[60]

Len T,Yan Y,Morfin F.Operando X-ray absorption spectroscopic study of ultradispersed Mo/TiO2 CO2-hydrogenation catalysts: why does rutile promote methanol synthesis?.ACS Catal2023;13:13982-93

[61]

Berger T,Diwald O.Light-induced charge separation in anatase TiO2 particles.J Phys Chem B2005;109:6061-8

[62]

Nakamura R,Murakoshi K.In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions.J Am Chem Soc2003;125:7443-50

[63]

Copéret C,Gordon CP.Active sites in supported single-site catalysts: an NMR perspective.J Am Chem Soc2017;139:10588-96

[64]

Xu J,Deng F.Metal active sites and their catalytic functions in zeolites: insights from solid-state NMR spectroscopy.Acc Chem Res2019;52:2179-89

[65]

Ashbrook SE.New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei.J Am Chem Soc2014;136:15440-56

[66]

Kwak JH,Mei D.Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3.Science2009;325:1670-3

[67]

Wang Q,Hung I.Mapping the oxygen structure of γ-Al2O3 by high-field solid-state NMR spectroscopy.Nat Commun2020;11:3620 PMCID:PMC7367832

[68]

Peng L,Kim N,Grey CP.Detection of Brønsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques.Nat Mater2005;4:216-9

[69]

Ashbrook SE.Solid state 17O NMR-an introduction to the background principles and applications to inorganic materials.Chem Soc Rev2006;35:718-35

[70]

Wang M,Zheng S.Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy.Sci Adv2015;1:e1400133 PMCID:PMC4644084

[71]

Beck TJ,Batzill M,Di Valentin C.Surface structure of TiO2(011)-(2×1).Phys Rev Lett2004;93:036104

[72]

Di Valentin C,Selloni A.Adsorption of water on reconstructed rutile TiO2(011)-(2 × 1): Ti=O double bonds and surface reactivity.J Am Chem Soc2005;127:9895-903

[73]

He Y,Dulub O,Diebold U.Local ordering and electronic signatures of submonolayer water on anatase TiO2(101).Nat Mater2009;8:585-9

[74]

Yuan W,Li XY.Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy.Science2020;367:428-30

[75]

Aronson BJ,Stein A.Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates: synthesis and structural characterization.Chem Mater1997;9:2842-51

[76]

Shukri G.Density functional theory study of ethylene adsorption on clean anatase TiO2 (001) surface.Surf Sci2014;619:59-66

[77]

Sanz JF,Márquez A.A first principles study of Pd deposition on the TiO2 (110) surface.TheorChem Acc2000;104:317-22

[78]

Zhou G,Dong Y,He D.Engineering the exposed facets and open-coordinated sites of brookite TiO2 to boost the loaded Ru nanoparticle efficiency in benzene selective hydrogenation.Appl Surf Sci2019;486:187-97

[79]

Vijay A,Metiu H.Adsorption of gold on stoichiometric and reduced rutile TiO2 (110) surfaces.J Chem Phys2003;118:6536-51

[80]

Posternak M,Delley B.Dissociation of water on anatase TiO2 nanoparticles: the role of undercoordinated Ti atoms at edges.J Phys Chem C2009;113:15862-7

[81]

Dette C,Mangel S,Jung SJ.Atomic structure of water monolayer on anatase TiO2 (101) surface.J Phys Chem C2018;122:11954-60

[82]

Dette C,Mangel S,Jung SJ.Single-molecule vibrational spectroscopy of H2O on anatase TiO2 (101).J Phys Chem C2017;121:1182-7

[83]

Gopal NO,Sheu SC.A potential site for trapping photogenerated holes on rutile TiO2 surface as revealed by EPR spectroscopy: an avenue for enhancing photocatalytic activity.J Am Chem Soc2010;132:10982-3

[84]

Nolan M,Gray KA.Localization of photoexcited electrons and holes on low coordinated Ti and O sites in free and supported TiO2 nanoclusters.J Phys Chem C2014;118:27890-900

[85]

Xiong F,Wu Z.Methanol conversion into dimethyl ether on the anatase TiO2(001) surface.Angew Chem Int Ed Engl2016;55:623-8

[86]

Dmitrieva LV,Podkorytov IS.A comparison of NMR spectral parameters of 47Ti and 49Ti nuclei in rutile and anatase.Phys Solid State1999;41:1097-9

[87]

Ganapathy S,Kumar R.Multinuclear (27Al, 29Si, 47,49Ti) solid-state NMR of titanium substituted zeolite USY.Solid State Nucl Magn Reson2003;24:184-95

[88]

Yamada K,Ohashi R,Deguchi K.Solid-state 47/49Ti nuclear magnetic resonance of TiO2.Chem Lett2014;43:1520-1

[89]

Quantities, units and symbols in physical chemistry. 2nd editon. 1993. Available from: https://old.iupac.org/publications/books/gbook/green_book_2ed.pdf. [Last accessed on 5 Jul 2024]

[90]

Stone NJ.Table of nuclear electric quadrupole moments.Atom Data Nucl Data2016;111-2:1-28

[91]

Pyykkö P.Year-2008 nuclear quadrupole moments.Mol Phys2008;106:1965-74

[92]

Bastow TJ.47,49Ti NMR: evolution of crystalline TiO2 from the gel state.Chem Mater1999;11:3518-20

[93]

Gervais C,Pottier A,Babonneau F.Solid-State 47,49Ti NMR determination of the phase distribution of titania nanoparticles.Chem Mater2001;13:462-7

[94]

Bräuniger T,Pampel A.Application of fast amplitude-modulated pulse trains for signal enhancement in static and magic-angle-spinning 47,49Ti-NMR spectra.Solid State Nucl Magn Reson2004;26:114-20

[95]

Larsen FH,Lipton AS.Separation of 47Ti and 49Ti solid-state NMR lineshapes by static QCPMG experiments at multiple fields.J Magn Reson2006;178:228-36

[96]

Epifani M,Díaz R,Siciliano P.TiO2 colloidal nanocrystals surface modification by V2O5 species: Investigation by 47,49Ti MAS-NMR and H2, CO and NO2 sensing properties.Appl Surf Sci2015;351:1169-73

[97]

Gerothanassis IP.Oxygen-17 NMR spectroscopy: basic principles and applications (part I).Prog Nucl Magn Reson Spectrosc2010;56:95-197

[98]

Gerothanassis IP.Oxygen-17 NMR spectroscopy: basic principles and applications. Part II.Prog Nucl Magn Reson Spectrosc2010;57:1-110

[99]

Bastow TJ,Whitfield HJ.Electron diffraction and 47,49Ti and 17O NMR studies of natural and synthetic brookite.Chem Mater2000;12:436-9

[100]

Lafond V,Maquet J,Babonneau F.17O MAS NMR study of the bonding mode of phosphonate coupling molecules in a titanium oxo-alkoxo-phosphonate and in titania-based hybrid materials.Chem Mater2003;15:4098-103

[101]

Bastow TJ,Smith ME.Characterisation of titania gels by 17O nuclear magnetic resonance and electron diffraction.J Mater Chem1993;3:697-702

[102]

Rao Y,Trudeau M,Antonelli DM.17O and 15N solid state NMR studies on ligand-assisted templating and oxygen coordination in the walls of mesoporous Nb, Ta and Ti oxides.J Am Chem Soc2008;130:15726-31

[103]

Métro TX,Martinez A,Laurencin D.Unleashing the potential of 17O NMR spectroscopy using mechanochemistry.Angew Chem Int Ed Engl2017;56:6803-7

[104]

Sun X,Yan J,Guan N.Solid-state NMR investigation of the 16/17O isotope exchange of oxygen species in pure-anatase and mixed-phase TiO2.Chem Phys Lett2014;594:34-40

[105]

Li Y,Jiang N.Distinguishing faceted oxide nanocrystals with 17O solid-state NMR spectroscopy.Nat Commun2017;8:581 PMCID:PMC5603560

[106]

Li Y,Liu C.NMR and EPR studies of partially reduced TiO2.Acta Phys Chim Sin2020;36:1905021

[107]

Peng L,Liu Y.17O magic angle spinning NMR studies of Brønsted acid sites in zeolites HY and HZSM-5.J Am Chem Soc2007;129:335-46

[108]

Merle N,Baudouin A.17O NMR gives unprecedented insights into the structure of supported catalysts and their interaction with the silica carrier.J Am Chem Soc2012;134:9263-75

[109]

Guo Q,Zhou C,Yang X.Single molecule photocatalysis on TiO2 surfaces.Chem Rev2019;119:11020-41

[110]

Chen J,Lin Z.Interactions of oxide surfaces with water revealed with solid-state NMR spectroscopy.J Am Chem Soc2020;142:11173-82

[111]

Ravera E,Parigi G.Basic facts and perspectives of Overhauser DNP NMR.J Magn Reson2016;264:78-87

[112]

Gurinov A,Kuzhelev A.Mixed-valence compounds as polarizing agents for overhauser dynamic nuclear polarization in solids*.Angew Chem Int Ed Engl2021;60:15371-5 PMCID:PMC8361920

[113]

Küçük SE,Sezer D.Carbon and proton Overhauser DNP from MD simulations and ab initio calculations: TEMPOL in acetone.Phys Chem Chem Phys2015;17:24874-84

[114]

Wiśniewski D,Lesanovsky I.Solid effect DNP polarization dynamics in a system of many spins.J Magn Reson2016;264:30-8

[115]

Banerjee D,Feintuch A,Goldfarb D.The interplay between the solid effect and the cross effect mechanisms in solid state 13C DNP at 95 GHz using trityl radicals.J Magn Reson2013;230:212-9

[116]

Liao W,Gordon CP,Copéret C.Dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS): principles, protocols, and practice.Curr Opin Colloid In2018;33:63-71

[117]

Park H,Heumann S.Heteronuclear cross-relaxation effect modulated by the dynamics of N-functional groups in the solid state under 15N DP-MAS DNP.J Magn Reson2020;312:106688

[118]

Hovav Y,Vega S.Theoretical aspects of dynamic nuclear polarization in the solid state - the cross effect.J Magn Reson2012;214:29-41

[119]

Rankin AGM,Pourpoint F,Lafon O.Recent developments in MAS DNP-NMR of materials.Solid State Nucl Magn Reson2019;101:116-43

[120]

Lesage A,Gajan D.Surface enhanced NMR spectroscopy by dynamic nuclear polarization.J Am Chem Soc2010;132:15459-61

[121]

Rossini AJ,Lelli M,Copéret C.Dynamic nuclear polarization surface enhanced NMR spectroscopy.Acc Chem Res2013;46:1942-51

[122]

Kobayashi T,Slowing II,Pruski M.Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research.ACS Catal2015;5:7055-62

[123]

Li W,Xu J.Probing the surface of γ-Al2O3 by oxygen-17 dynamic nuclear polarization enhanced solid-state NMR spectroscopy.Phys Chem Chem Phys2018;20:17218-25

[124]

Blanc F,Jefferson DA,Rosay M.Dynamic nuclear polarization enhanced natural abundance 17O spectroscopy.J Am Chem Soc2013;135:2975-8

[125]

Perras FA,Slowing II,Pruski M.Direct 17O dynamic nuclear polarization of single-site heterogeneous catalysts.Chem Commun2018;54:3472-5

[126]

Perras FA,Pruski M.Natural Abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy.J Am Chem Soc2015;137:8336-9

[127]

Giovine R,Pourpoint F,Amoureux JP.Magnetization transfer from protons to quadrupolar nuclei in solid-state NMR using PRESTO or dipolar-mediated refocused INEPT methods.J Magn Reson2019;299:109-23

[128]

Zhao X,Schmedt auf der Günne J.Heteronuclear polarization transfer by symmetry-based recoupling sequences in solid-state NMR.Solid State Nucl Magn Reson2004;26:57-64

[129]

Perras FA,Pruski M.PRESTO polarization transfer to quadrupolar nuclei: implications for dynamic nuclear polarization.Phys Chem Chem Phys2015;17:22616-22

[130]

Chen CH,Mentink-Vigier F.Direct 17O isotopic labeling of oxides using mechanochemistry.Inorg Chem2020;59:13050-66 PMCID:PMC7487002

[131]

Nagashima H,Kon Y,Lafon O.Observation of low-γ quadrupolar nuclei by surface-enhanced NMR spectroscopy.J Am Chem Soc2020;142:10659-72

[132]

Khan SU,Ingler WB Jr.Efficient photochemical water splitting by a chemically modified n-TiO2.Science2002;297:2243-5

[133]

Kudo A.Heterogeneous photocatalyst materials for water splitting.Chem Soc Rev2009;38:253-78

[134]

Zou Z,Sayama K.Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst.Nature2001;414:625-7

[135]

Cortright RD,Dumesic JA.Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.Nature2002;418:964-7

[136]

Fu Q,Flytzani-Stephanopoulos M.Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts.Science2003;301:935-8

[137]

Takata T,Sakata Y.Photocatalytic water splitting with a quantum efficiency of almost unity.Nature2020;581:411-4

[138]

Liu Z,Orozco I.Water-promoted interfacial pathways in methane oxidation to methanol on a CeO2-Cu2O catalyst.Science2020;368:513-7

[139]

Saavedra J,Pursell CJ,Chandler BD.The critical role of water at the gold-titania interface in catalytic CO oxidation.Science2014;345:1599-602

[140]

Merte LR,Bechstein R.Water-mediated proton hopping on an iron oxide surface.Science2012;336:889-93

[141]

Hussain H,Woolcot T.Structure of a model TiO2 photocatalytic interface.Nat Mater2017;16:461-6

[142]

Björneholm O,Hodgson A.Water at interfaces.Chem Rev2016;116:7698-726

[143]

Lin L,Chen S,Domen K.Visible-light-driven photocatalytic water splitting: recent progress and challenges.Trends Chem2020;2:813-24

[144]

Wang ZT,Mu R.Probing equilibrium of molecular and deprotonated water on TiO2(110).Proc Natl Acad Sci U S A2017;114:1801-5 PMCID:PMC5338384

[145]

Du Y,Zhang Z,Dupuis M.Two pathways for water interaction with oxygen adatoms on TiO2(110).Phys Rev Lett2009;102:096102

[146]

Kristoffersen HH,Martinez U.Role of steps in the dissociative adsorption of water on rutile TiO2(110).Phys Rev Lett2013;110:146101

[147]

Kamal C,Walle LE.Core-level binding energy reveals hydrogen bonding configurations of water adsorbed on TiO2(110) surface.Phys Rev Lett2021;126:016102

[148]

Vittadini A,Rotzinger FP.Structure and energetics of water adsorbed at TiO2 anatase 101 and 001 surfaces.Phys Rev Lett1998;81:2954-7

[149]

Tilocca A.Vertical and lateral order in adsorbed water layers on anatase TiO2(101).Langmuir2004;20:8379-84

[150]

Walle LE,Johansson EMJ.Mixed dissociative and molecular water adsorption on anatase TiO2 (101).J Phys Chem C2011;115:9545-50

[151]

Patrick CE.Structure of a water monolayer on the anatase TiO2(101) surface.Phys Rev Appl2014;2:014001

[152]

Fasulo F,Muñoz-garcía AB,Parrinello M.Dynamics of water dissociative adsorption on TiO2 anatase (101) at monolayer coverage and below.J Phys Chem C2022;126:15752-8

[153]

Boles MA,Hyeon T.The surface science of nanocrystals.Nat Mater2016;15:141-53

[154]

Zhang X,Xue Y.Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods.Sci Rep2014;4:4596 PMCID:PMC3975220

[155]

Mueller DN,Bluhm H.Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions.Nat Commun2015;6:6097

[156]

Llordés A,Fernandez-Martinez A.Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing.Nat Mater2016;15:1267-73

[157]

Zandi O.Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy.Nat Chem2016;8:778-83

[158]

Feng N,Huang M.Unravelling the efficient photocatalytic activity of boron-induced Ti3+ species in the surface layer of TiO2.Sci Rep2016;6:34765 PMCID:PMC5052528

[159]

Setvín M,Scheiber P.Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101).Science2013;341:988-91

[160]

Peng YK,Li Y.Unravelling the key role of surface features behind facet-dependent photocatalysis of anatase TiO2.Chem Commun2019;55:4415-8

[161]

Peng YK,Qu J.Trimethylphosphine-assisted surface fingerprinting of metal oxide nanoparticle by 31P solid-state NMR: a zinc oxide case study.J Am Chem Soc2016;138:2225-34

[162]

Peng YK,Edman Tsang SC.Differentiating surface titanium chemical states of anatase TiO2 functionalized with various groups.Chem Sci2018;9:2493-500 PMCID:PMC5909675

[163]

Peng Y,Zhang L.Probe-molecule-assisted NMR spectroscopy: a comparison with photoluminescence and electron paramagnetic resonance spectroscopy as a characterization tool in facet-specific photocatalysis.ChemCatChem2017;9:155-60

[164]

Peng YK,Chou HL.Mapping surface-modified titania nanoparticles with implications for activity and facet control.Nat Commun2017;8:675 PMCID:PMC5610198

[165]

Zheng A,Deng F.31P NMR chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts.Chem Rev2017;117:12475-531

[166]

Zheng A,Liu SB.Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules.Phys Chem Chem Phys2011;13:14889-901

[167]

Yao Q,Huang D.MAS NMR studies on the formation and structure of oxygen vacancy on the CeO2 {110} surface under a reducing atmosphere.J Phys Chem C2023;127:13021-33

[168]

Wu Y,Huang D.Direct quantification of oxygen vacancy on the TiO2 surface by 31P solid-state NMR.Chem Catal2023;3:100556

[169]

Chu Y,Zheng A.Acidic strengths of Brønsted and lewis acid sites in solid acids scaled by 31P NMR chemical shifts of adsorbed trimethylphosphine.J Phys Chem C2011;115:7660-7

[170]

Hu Y,Fu Y.Facet-dependent acidic and catalytic properties of sulfated titania solid superacids.Chem Commun2015;51:14219-22

[171]

Zhang H,Zheng A,Shen W.Reactivity enhancement of 2-propanol photocatalysis on SO42-/TiO2: insights from solid-state NMR spectroscopy.Environ Sci Technol2008;42:5316-21

[172]

Choi W,Hoffmann MR.The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics.J Phys Chem1994;98:13669-79

[173]

Vamathevan V,Beydoun D,Mcevoy S.Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles.J Photoch Photobio A2002;148:233-45

[174]

He C,Hu X.Influence of silver doping on the photocatalytic activity of titania films.Appl Surf Sci2002;200:239-47

[175]

Jaegers NR,Hu JZ.Impact of hydration on supported V2O5/TiO2 catalysts as explored by magnetic resonance spectroscopy.J Phys Chem C2021;125:16766-75

[176]

Stebbins JF.Aluminum substitution in rutile titanium dioxide:  new constraints from high-resolution 27Al NMR.Chem Mater2007;19:1862-9

[177]

Chen X.Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications.Chem Rev2007;107:2891-959

[178]

Rumaiz AK,Cockayne E,Jaffari GH.Oxygen vacancies in N doped anatase TiO2: experiment and first-principles calculations.Appl Phys Lett2009;95:262111

[179]

Cronemeyer DC.Infrared absorption of reduced rutile TiO2 single crystals.Phys Rev1959;113:1222-6

[180]

Tai Z,Wang T,Tai J.Netted C-doped TiO2 mesoporous nanostructure decorated by Cu nanoparticles for photocatalytic CO2 reduction.ACS Appl Nano Mater2022;5:18070-9

[181]

Dong Y,Wang Y.A robust novel 0D/2D MoS3 QDs/C-doped atomically thin TiO2(B) nanosheet composite for highly efficient photocatalytic H2 evolution.Appl Surf Sci2022;599:153972

[182]

Li Y,Gu M,Zhang W.Synergistic effect of interstitial C doping and oxygen vacancies on the photoreactivity of TiO2 nanofibers towards CO2 reduction.Appl Catal B Environ2022;317:121773

[183]

Shayegan Z,Lee C.Carbon-doped TiO2 film to enhance visible and UV light photocatalytic degradation of indoor environment volatile organic compounds.J Environ Chem Eng2020;8:104162

[184]

Yang Y,Qi Q.A low-cost and stable Fe2O3/C-TiO2 system design for highly efficient photocatalytic H2 production from seawater.Catal Commun2020;143:106047

[185]

Noorimotlagh Z,Jaafarzadeh N,Ramezani Z.Improved performance of immobilized TiO2 under visible light for the commercial surfactant degradation: role of carbon doped TiO2 and anatase/rutile ratio.Catal Today2020;348:277-89

[186]

Lettmann C,Kisch H,Maier WF.Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst.Appl Catal B Environ2001;32:215-27

[187]

Ohno T,Nishijima K.Degradation of methylene blue on carbonate species-doped TiO2 photocatalysts under visible light.Chem Lett2004;33:750-1

[188]

Xu C,Gray ML.Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination.Appl Catal B Environ2006;64:312-7

[189]

Xu C,Ingler WB.Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting.Sol Energy Mater Sol Cells2007;91:938-43

[190]

Liu F,Yang L,Xu J.Enhanced photocatalytic performance of carbon-coated TiO2-x with surface-active carbon species.J Phys Chem C2018;122:10948-55

[191]

Chen C,Zeng H.Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species.J Mol Catal A Chem2009;314:35-41

[192]

Rockafellow EM,Trewyn BG,Jenks WS.Solid-state 13C NMR characterization of carbon-modified TiO2.Chem Mater2009;21:1187-97

[193]

Feng N,Deng F.Interfacial-bonding Ti–N–C boosts efficient photocatalytic H2 evolution in close coupling g-C3N4/TiO2.J Phys Chem C2021;125:12012-8

[194]

Feng G,Sun T.Nitrogen-doped titanium dioxide for selective photocatalytic oxidation of methane to oxygenates.ACS Appl Mater Interfaces2024;16:4600-5

[195]

Bhowmick S,Santra B.Modulation of the work function of TiO2 nanotubes by nitrogen doping: implications for the photocatalytic degradation of dyes.ACS Appl Nano Mater2023;6:50-60

[196]

Chen C,Yang C.Electron-donating N-–Ti3+–Ov interfacial sites with high selectivity for the oxidation of primary C–H bonds.Cell Rep Phys Sci2022;3:100936

[197]

Kwon J,Schreck M,Tervoort E.Gas-phase nitrogen doping of monolithic TiO2 nanoparticle-based aerogels for efficient visible light-driven photocatalytic H2 production.ACS Appl Mater Interfaces2021;13:53691-701

[198]

Liang M,Yu F.A confinement strategy to in-situ prepare a peanut-like N-doped, C-wrapped TiO2 electrode with an enhanced desalination capacity and rate for capacitive deionization.Nano Res2021;14:684-91

[199]

Kong X,Jiang R.Nanolayered heterostructures of N-doped TiO2 and N-doped carbon for hydrogen evolution.ACS Appl Nano Mater2020;3:1373-81

[200]

Reyes-garcia EA,Reyes-gil K.15N solid state NMR and EPR characterization of N-doped TiO2 photocatalysts.J Phys Chem C2007;111:2738-48

[201]

Feng N,Wang Q.Boron environments in B-doped and (B, N)-codoped TiO2 photocatalysts: a combined solid-state NMR and theoretical calculation study.J Phys Chem C2011;115:2709-19

[202]

Feng N,Zheng A.Understanding the high photocatalytic activity of (B, Ag)-codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations.J Am Chem Soc2013;135:1607-16

[203]

Zhao W,Chen C,Shuai Z.Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation.J Am Chem Soc2004;126:4782-3

[204]

Reyes-garcia EA,Raftery D.Solid-state characterization of the nuclear and electronic environments in a boron−fluoride co-doped TiO2 visible-light photocatalyst.J Phys Chem C2007;111:17146-54

[205]

Wu T,Yin L,Cheng H.Switching photocatalytic H2 and O2 generation preferences of rutile TiO2 microspheres with dominant reactive facets by boron doping.J Phys Chem C2015;119:84-9

[206]

Liu G,Sun C,Lu GQ.Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2.Angew Chem Int Ed Engl2008;47:4516-20

[207]

Gopal NO,Ke SC.Chemical state and environment of boron dopant in B,N-codoped anatase TiO2 nanoparticles: an avenue for probing diamagnetic dopants in TiO2 by electron paramagnetic resonance spectroscopy.J Am Chem Soc2008;130:2760-1

[208]

In S,Berg R.Effective visible light-activated B-doped and B,N-codoped TiO2 photocatalysts.J Am Chem Soc2007;129:13790-1

[209]

Zaleska A,Grabowska E.Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light.Appl Catal B Environ2008;78:92-100

[210]

Coudurier G,Vedrine JC,Abrams L.Properties of boron-substituted ZSM-5 and ZSM-11 zeolites.J Catal1987;108:1-14

[211]

de Ruiter R, Kentgens A, Grootendorst J, Jansen J, van Bekkum H. Calcination and deboronation of [B]-MFI single crystals.Zeolites1993;13:128-38

[212]

Dorn RW,Hung I.Atomic-level structure of mesoporous hexagonal boron nitride determined by high-resolution solid-state multinuclear magnetic resonance spectroscopy and density functional theory calculations.Chem Mater2022;34:1649-65

[213]

Mark LO,Mcdermott WP.Highly selective carbon-supported boron for oxidative dehydrogenation of propane.ChemCatChem2021;13:3611-8

[214]

Medek A,Frydman L.Multiple-quantum magic-angle spinning NMR: a new method for the study of quadrupolar nuclei in solids.J Am Chem Soc1995;117:12779-87

[215]

Wang SH,Baltisberger JH,Stebbins JF.Multiple-quantum magic-angle spinning and dynamic-angle spinning NMR spectroscopy of quadrupolar nuclei.Solid State Nucl Magn Reson1997;8:1-16

[216]

Smith ME.Recent advances in experimental solid state NMR methodology for half-integer spin quadrupolar nuclei.Prog Nucl Mag Res Sp1999;34:159-201

[217]

Dorn RW,Chen K.Structure determination of boron-based oxidative dehydrogenation heterogeneous catalysts with ultra-high field 35.2 T 11B solid-state NMR spectroscopy.ACS Catal2020;10:13852-66 PMCID:PMC8372215

[218]

Sasaki J,Hoshino K.Tracer impurity diffusion in single-crystal rutile (TiO2-x).J Phys Chem Solids1985;46:1267-83

[219]

Bak T,Kang S.Charge transport in polycrystalline titanium dioxide.J Phys Chem Solids2003;64:1089-95

[220]

Gesenhues U.Al-doped TiO2 pigments: influence of doping on the photocatalytic degradation of alkyd resins.J Photoch Photobio A2001;139:243-51

[221]

Kotzamanidi S,Binas V,Mantzavinos D.Solar photocatalytic degradation of propyl paraben in Al-doped TiO2 suspensions.Catal Today2018;313:148-54

[222]

Murashkina AA,Ryabchuk VK.Influence of the dopant concentration on the photoelectrochemical behavior of Al-doped TiO2.J Phys Chem C2018;122:7975-81

[223]

Gionco C,Maurelli S.Al- and Ga-doped TiO2, ZrO2, and HfO2: the nature of O 2p trapped holes from a combined electron paramagnetic resonance (EPR) and density functional theory (DFT) study.Chem Mater2015;27:3936-45

[224]

Su CY,Liu WS,Perng TP.Photocatalysis and hydrogen evolution of Al- and Zn-doped TiO2 nanotubes fabricated by atomic layer deposition.ACS Appl Mater Interfaces2018;10:33287-95

[225]

Yang L,Deng F.Aluminum-doped TiO2 with dominant {001} facets: microstructure and property evolution and photocatalytic activity.J Phys Chem C2022;126:5555-63

[226]

Xu J,Li S.Solid-state NMR in zeolite catalysis. 1st edition. Singapore: Springer. 2019.

[227]

Qi G,Xu J.Solid-state NMR studies of internuclear correlations for characterizing catalytic materials.Chem Soc Rev2021;50:8382-99

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/