Polar-group functionalized polyetherimide separator with accelerated Li-ion transport for stable lithium metal batteries

Yana Sun , Jinyun Zheng , Huajie Zhu , Mingrui Yang , Enhui Wang , Xiaoniu Guo , Xiangming Feng , Weihua Chen

Chemical Synthesis ›› 2026, Vol. 6 ›› Issue (1) : 2

PDF
Chemical Synthesis ›› 2026, Vol. 6 ›› Issue (1) :2 DOI: 10.20517/cs.2024.111
Research Article

Polar-group functionalized polyetherimide separator with accelerated Li-ion transport for stable lithium metal batteries

Author information +
History +
PDF

Abstract

Research on functional separators is crucial for the performance of batteries owing to the inability of commercial polyolefin separators to suppress dendrites growth in lithium metal batteries, resulting in poor performance and safety hazards. Herein, we report polar groups of terminal amino and amide functionalized polyetherimide separators [ethylenediamine grafting polyetherimide (PEI-EDA)] with uniformly connected pore structures. The PEI-EDA separator displays excellent thermal stability, electrolyte affinity and ion transport ability with an ionic conductivity of 1.96 mS·cm-1 and a Li+ transference number of 0.74. Notably, the lone-pair electrons in nitrogen atoms of the −NH2 and −CONH− groups have interaction with Li+, and the active hydrogens on them have the electrostatic interaction with PF6-, which achieves the desolvation of Li+, and improves ion transport rate and uniform lithium-ion flux, synergistically inducing homogeneous deposition of Li+, suppressing the growth of dendritic lithium and forming a stable fluorine-rich solid interphase layer and uniform cathode interphase layer. Furthermore, the data from online electrochemical mass spectroscopy (OLEMS) show that the gas production of a battery with a PEI-EDA separator is significantly reduced during the cycling process, which effectively improves the battery safety. Uniform and dense lithium deposition not only prolongs the cycle-life of Li||Cu and Li||Li cells but also enhances the rate capability and cycling stability of Li||LiFePO4 batteries even under high cathode loading and extreme temperature conditions. Moreover, the Li||LiFePO4 pouch battery displays stable cycling performance and benign safety under the folding state. This suggests the PEI-EDA separator has a promising application prospect in the next-generation secure dendrite-free metal batteries.

Keywords

Functionalized polyetherimide separator / polar groups / ion transport ability / lithium metal batteries / dendrite-free

Cite this article

Download citation ▾
Yana Sun, Jinyun Zheng, Huajie Zhu, Mingrui Yang, Enhui Wang, Xiaoniu Guo, Xiangming Feng, Weihua Chen. Polar-group functionalized polyetherimide separator with accelerated Li-ion transport for stable lithium metal batteries. Chemical Synthesis, 2026, 6(1): 2 DOI:10.20517/cs.2024.111

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu K.Li-ion battery electrolytes.Nat Energy2021;6:763

[2]

Tian Y,Rutt A.Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization.Chem Rev2021;121:1623-69

[3]

Bi CX,Hou LP.Anode material options toward 500 Wh kg-1 lithium-sulfur batteries.Adv Sci2022;9:e2103910 PMCID:PMC8805573

[4]

Chen S,Lee H.Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries.Joule2019;3:1094-105

[5]

Zhang X,Zhou Z.Towards practical lithium-metal anodes.Chem Soc Rev2020;49:3040-71

[6]

Kim K,Lee H.Hybrid thermoelectrochemical and concentration cells for harvesting low-grade waste heat.Chem Eng J2021;426:131797

[7]

Lin D,Liang Z.Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.Nat Nanotechnol2016;11:626-32

[8]

Wu C,Lu W.Mg doped Li-LiB alloy with in situ formed lithiophilic LiB skeleton for lithium metal batteries.Adv Sci2020;7:1902643 PMCID:PMC7080552

[9]

Li W,Song K.Binder-induced ultrathin SEI for defect-passivated hard carbon enables highly reversible sodium-ion storage.Adv Energy Mater2023;13:2300648

[10]

Yan C,Yao YX.An armored mixed conductor interphase on a dendrite-free lithium-metal anode.Adv Mater2018;30:e1804461

[11]

Zeng Z,Han KS.Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries.Nat Energy2018;3:674-81

[12]

Wang Y,Gao Y.Difluoroester solvent toward fast-rate anion-intercalation lithium metal batteries under extreme conditions.Nat Commun2024;15:5408 PMCID:PMC11208432

[13]

Hao Z,Wu Y.Electronegative nanochannels accelerating lithium-ion transport for enabling highly stable and high‐rate lithium metal anodes.Adv Energy Mater2023;13:2204007

[14]

Ji Y,Zhang J.A single-layer piezoelectric composite separator for durable operation of Li metal anode at high rates.Energy Environ. Mater2024;7:e12510

[15]

Sheng L,Arbizzani C.A tailored ceramic composite separator with electron-rich groups for high-performance lithium metal anode.J Membr Sci2022;657:120644

[16]

Guo X,Wang R.Interface-compatible gel-polymer electrolyte enabled by NaF-solubility-regulation toward all-climate solid-state sodium batteries.Angew Chem Int Ed Engl2024;63:e202402245

[17]

Xu H,Shen Y.Enabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes.Energy Environ Mater2022;5:852-64

[18]

Zhu L,Wang Y.Tunneling interpenetrative lithium ion conduction channels in polymer-in-ceramic composite solid electrolytes.J Am Chem Soc2024;146:6591-603

[19]

Feng X,Zheng J,Yang M.Facile preparation of higher conductivity porous polyimide-based separators by phase inversion and its overcharge-sensitive modification for lithium-ion batteries.Batteries Supercaps2023;6:e202300244

[20]

Huang X,Li M,Dong P.Functionalized separator for next-generation batteries.Mater Today2020;41:143-55

[21]

Hao Z,Zhao Q.Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes.Adv Funct Mater2021;31:2102938

[22]

Arora P.Battery separators.Chem Rev2004;104:4419-62

[23]

Li J,Wang F.Anionic metal-organic framework modified separator boosting efficient Li-ion transport.Chem Eng J2023;451:138536

[24]

Zhang T,Tian T.Sustainable separators for high-performance lithium ion batteries enabled by chemical modifications.Adv Funct. Mater2019;29:1902023

[25]

Li X,Guo X.An ultrathin nonporous polymer separator regulates Na transfer toward dendrite-free sodium storage batteries.Adv Mater2023;35:e2203547

[26]

Guo X,Xu Y.Understanding the accelerated sodium-ion-transport mechanism of an interfacial modified polyacrylonitrile separator.J Phys Chem C2022;126:8238-47

[27]

Li C,Shi C.Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes.Nat Commun2019;10:1363 PMCID:PMC6433896

[28]

Jung A,Lee SW,Son JG.Phase separation-controlled assembly of hierarchically porous aramid nanofiber films for high-speed lithium-metal batteries.Small2022;18:e2205355

[29]

Hu W,Jhulki S.Heat-resistant Al2O3 nanowire-polyetherimide separator for safer and faster lithium-ion batteries.J Mater Sci Technol2023;142:112-20

[30]

Ye F,Liao K.A smart lithiophilic polymer filler in gel polymer electrolyte enables stable and dendrite-free Li metal anode.J Mater Chem A2020;8:9733-42

[31]

Wang J,Zhang Q.Stable sodium-metal batteries in carbonate electrolytes achieved by bifunctional, sustainable separators with tailored alignment.Adv Mater2022;34:e2206367

[32]

Hussain A,Saleem A.Polyetherimide membrane with tunable porous morphology for safe lithium metal-based batteries.Chem Eng J2023;453:139804

[33]

Machatschek R,Lendlein A.Thin-layer studies on surface functionalization of polyetherimide: hydrolysis versus amidation.J Mater Res2022;37:67-76

[34]

He X,Shi C,Li W.Solvent resistant nanofiltration membranes using EDA-XDA co-crosslinked poly(ether imide).Sep Purif Technol2018;206:247-55

[35]

Zhang Y,Song Y.Tannic acid/polyethyleneimine-decorated polypropylene separators for Li-ion batteries and the role of the interfaces between separator and electrolyte.Electrochim Acta2018;275:25-31

[36]

Doyle RP,Macrae M.Poly(ethylenimine)-based polymer blends as single-ion lithium conductors.Macromolecules2014;47:3401-8

[37]

Lee J,Hwang J,Yu C.Delocalized lithium ion flux by solid-state electrolyte composites coupled with 3D porous nanostructures for highly stable lithium metal batteries.ACS Nano2023;17:16020-35 PMCID:PMC10863402

[38]

Guo Y,Liu L.Thermally conductive AlN-network shield for separators to achieve dendrite-free plating and fast Li-ion transport toward durable and high-rate lithium-metal anodes.Adv Sci2022;9:e2200411 PMCID:PMC9218647

[39]

Jiao S,Cao R.Stable cycling of high-voltage lithium metal batteries in ether electrolytes.Nat Energy2018;3:739-46

[40]

Shi J,Li H,Zhu B.Improved thermal and electrochemical performances of PMMA modified PE separator skeleton prepared via dopamine-initiated ATRP for lithium ion batteries.J Membr Sci2013;437:160-8

[41]

Zhang H,Bai Y.Amino-functionalized Al2O3 particles coating separator with excellent lithium-ion transport properties for high-power density lithium-ion batteries.Adv Eng Mater2020;22:1901545

[42]

Cai Q,Jiao Y.All-graphitic multilaminate mesoporous membranes by interlayer-confined molecular assembly.Small2021;17:e2101173

[43]

Wang C,Li D,Zhang Q.Anion-modulated ion conductor with chain conformational transformation for stabilizing interfacial phase of high-voltage lithium metal batteries.Angew Chem Int Ed Engl2024;63:e202317856

[44]

Ha H,Kwon YH,Lee CK.UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries.Energy Environ Sci2012;5:6491

[45]

Yang Y,Wu Y.Hydrogen-bonded organic framework as superior separator with high lithium affinity C═N bond for low N/P ratio lithium metal batteries.Nano Lett2023;23:5061-9

[46]

Liu P,Xiao B.Revealing lithium battery gas generation for safer practical applications.Adv Funct Mater2022;32:2208586

[47]

Jin Y,Wei D.Detection of micro-scale Li dendrite via H2 gas capture for early safety warning.Joule2020;4:1714-29

[48]

Lu Z,Guo Y.Electrolyte sieving chemistry in suppressing gas evolution of sodium-metal batteries.Angew Chem2022;134:e202206340

[49]

Chazalviel J.Electrochemical aspects of the generation of ramified metallic electrodeposits.Phys Rev A1990;42:7355-67

[50]

Ren W,Zhang W.Dendrite-free lithium metal battery enabled by dendritic mesoporous silica coated separator.Adv Funct Materials2023;33:2301586

[51]

Chen Y,Pei H.Bioinspired separator with ion-selective nanochannels for lithium metal batteries.ACS Appl Mater Interfaces2023;15:18333-42

[52]

Liao C,Han L.A flame-retardant, high ionic-conductivity and eco-friendly separator prepared by papermaking method for high-performance and superior safety lithium-ion batteries.Energy Stor Mater2022;48:123-32

[53]

Zuo L,Xiao P.Upgrading the separators integrated with desolvation and selective deposition toward the stable lithium metal batteries.Adv Mater2024;36:e2311529

[54]

Yuan B,Qiu X.A safe separator with heat-dispersing channels for high-rate lithium-ion batteries.Adv Funct Mater2024;34:2308929

[55]

Ma L,Hu Y.Nanoporous and lyophilic battery separator from regenerated eggshell membrane with effective suppression of dendritic lithium growth.Energy Storage Mater2018;14:258-66

[56]

Liao C,Han L.Microcapsule modification strategy empowering separator multifunctionality to enhance safety of lithium-metal batteries.Small2024;20:e2404470

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/