Ultrafast S-scheme interfacial electron transport enhances CO2 photoreduction

Jindi Yang , Chuanbiao Bie

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (1) : 12

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (1) :12 DOI: 10.20517/cs.2024.105
review-article

Ultrafast S-scheme interfacial electron transport enhances CO2 photoreduction

Author information +
History +
PDF

Keywords

S-scheme heterojunctions / interfacial electron transfer / photocatalysis / CO2 reduction

Cite this article

Download citation ▾
Jindi Yang, Chuanbiao Bie. Ultrafast S-scheme interfacial electron transport enhances CO2 photoreduction. Chemical Synthesis, 2025, 5(1): 12 DOI:10.20517/cs.2024.105

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tang J,Shao Z.Advances in cutting-edge electrode engineering toward CO2 electrolysis at high current density and selectivity: a mini-review.Carbon Neutralization2022;1:140-58

[2]

Bie C,He B,Liu G.Exploring photogenerated charge carrier transfer in semiconductor/metal junctions using Kelvin probe force microscopy.J Mater Sci Technol2024;173:11-9

[3]

Yin Y,Han B.Two-dimensional materials: synthesis and applications in the electro-reduction of carbon dioxide.Chem Synth2022;2:19

[4]

Xie F,Sun J,Zhu B.A DFT study on Pt single atom loaded COF for efficient photocatalytic CO2 reduction.J Mater Sci Technol.2024;170:87-94

[5]

Wu D,Zhou J.Morphology and structure of lead-free CuSb-based double perovskites for photocatalytic CO2 reduction.Carbon Neutralization2022;1:298-305

[6]

Bie C,Yu J.Graphene oxide-based photocatalysts for CO2 reduction. In: Yu J, Zhang L, Kuang P, editors. Graphene oxide-metal oxide and other graphene oxide-based composites in photocatalysis and electrocatalysis. Elsevier; 2022. pp. 93-134.

[7]

Hiragond CB,Kim H.Unlocking solar energy: photocatalysts design for tuning the CO2 conversion into high-value (C2+) solar fuels.EnergyChem2024;6:100130

[8]

Vuong H,Phuong LP,Ho BN.Nitrogen-rich graphitic carbon nitride (g-C3N5): emerging low-bandgap materials for photocatalysis.Carbon Neutralization2023;2:425-57

[9]

Li Y,Qiao W.Nanostructured heterogeneous photocatalyst materials for green synthesis of valuable chemicals.Chem Synth2022;2:9

[10]

Bie C.Application of S -scheme heterojunction photocatalyst. In: Wang X, Anpo M, Fu X, editors. UV-visible photocatalysis for clean energy production and pollution remediation. Wiley; 2023. pp. 41-58.

[11]

Meng K,Cheng B.Plasmonic near-infrared-response S-scheme ZnO/CuInS2 photocatalyst for H2O2 production coupled with glycerin oxidation.Adv Mater2024;36:e2406460

[12]

Li F,Liao Y,Lv K.Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction.Nat Commun2023;14:3901 PMCID:PMC10317968

[13]

Zhang L,Yu H.Emerging S-scheme photocatalyst.Adv Mater2022;34:e2107668

[14]

Yu W.Unveiling S-scheme charge transfer mechanism.Acta Phys Chim Sin2024;40:2307022

[15]

Deng X,Qi K,Xu F.Ultrafast electron transfer at the In2O3/Nb2O5 S-scheme interface for CO2 photoreduction.Nat Commun2024;15:4807 PMCID:PMC11153544

AI Summary AI Mindmap
PDF

33

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/