Synthesis of metal-phenanthroline-modified hypercrosslinked polymer for enhanced CO2 capture and conversion via chemical and photocatalytic methods under ambient conditions

Huang Ouyang , Mengjie Peng , Kunpeng Song , Shengyao Wang , Hui Gao , Bien Tan

Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (1) : 1

PDF
Chemical Synthesis ›› 2025, Vol. 5 ›› Issue (1) :1 DOI: 10.20517/cs.2024.05
review-article

Synthesis of metal-phenanthroline-modified hypercrosslinked polymer for enhanced CO2 capture and conversion via chemical and photocatalytic methods under ambient conditions

Author information +
History +
PDF

Abstract

Catalytic conversion of CO2 into valuable chemicals is a promising approach to mitigate the greenhouse effect and alleviate energy shortages. Hypercrosslinked polymers (HCPs) offer a scalable and stable platform for this conversion, but they often suffer from low CO2 adsorption and activation capabilities, necessitating high temperatures and pressures for effectiveness. To overcome these limitations, nitrogen-based CO2-philic active sites have been integrated into the structure of HCPs, enhancing CO2 attraction and leading to superior adsorption performance. The incorporation of cobalt ions further bolsters CO2 affinity, with HCP-PNTL-Co-B achieving the highest observed adsorption heat of 33.0 kJ·mol-1 alongside a substantial 2.0 mmol·g-1 CO2 uptake. These modified HCPs exhibit higher yields and reaction rates in cycloaddition reactions with cocatalyst tetrabutylammonium bromide at room temperature and atmospheric pressure, while HCP-1,10-phenanthroline (PNTL)-Co-B demonstrates a higher CO production rate (2,173 μmol·g-1·h-1) and selectivity (84%) in photocatalytic reduction reaction. This research has successfully achieved outstanding carbon dioxide capture and conversion performance at room temperature and atmospheric pressure by introducing CO2-philic active sites and cobalt ions into HCPs via facile one-step polymerization. This study provides a new method to design highly efficient organic catalysts for CO2 conversion.

Keywords

Hypercrosslinked polymers / N heteroatoms / CO2 cycloaddition / CO2 photoreduction

Cite this article

Download citation ▾
Huang Ouyang, Mengjie Peng, Kunpeng Song, Shengyao Wang, Hui Gao, Bien Tan. Synthesis of metal-phenanthroline-modified hypercrosslinked polymer for enhanced CO2 capture and conversion via chemical and photocatalytic methods under ambient conditions. Chemical Synthesis, 2025, 5(1): 1 DOI:10.20517/cs.2024.05

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ji G,Liu Z.Design of porous organic polymer catalysts for transformation of carbon dioxide.Green Chem Eng2022;3:96-110

[2]

Truong CC.Catalyst-free fixation of carbon dioxide into value-added chemicals: a review.Environ Chem Lett2021;19:911-40

[3]

Cheng Y,Han B.Porous organic polymers for photocatalytic carbon dioxide reduction.ChemPhotoChem2021;5:406-17

[4]

Zhang XY,Zhang Y,Sun WY.Facet-dependent photocatalytic behavior of Fe-soc-MOF for carbon dioxide reduction.ACS Appl Mater Interfaces2023;15:3348-56

[5]

Steinlechner C.Renewable methane generation from carbon dioxide and sunlight.Angew Chem Int Ed Engl2018;57:44-5

[6]

Liao X,Kong L.Synergistic catalysis of hypercrosslinked ionic polymers with multi-ionic sites for conversion of CO2 to cyclic carbonates.Mol Catal2023;535:112834

[7]

Li PZ,Liu J,Zou R.A triazole-containing metal-organic framework as a highly effective and substrate size-dependent catalyst for CO2 conversion.J Am Chem Soc2016;138:2142-5

[8]

Truong CC.Recent advances in the catalytic fixation of carbon dioxide to value-added chemicals over alkali metal salts.J CO2 Util2020;41:101252

[9]

Zhao Y,Liu Z.Ionic-liquid-catalyzed approaches under metal-free conditions.Acc Chem Res2021;54:3172-90

[10]

Chen Y.Conversion of CO2 to value-added products mediated by ionic liquids.Green Chem2019;21:2544-74

[11]

Aomchad V,Yingcharoen P,D’elia V.Exploring the potential of group III salen complexes for the conversion of CO2 under ambient conditions.Catal Today2021;375:324-34

[12]

Lan D,Tan N.Multi-functionalization of GO with multi-cationic ILs as high efficient metal-free catalyst for CO2 cycloaddition under mild conditions.Carbon2018;127:245-54

[13]

Cui X,Surkus A.Zinc single atoms on N-doped carbon: an efficient and stable catalyst for CO2 fixation and conversion.Chinese J Catal2019;40:1679-85

[14]

Jayakumar S,Tao L.Cationic Zn-porphyrin immobilized in mesoporous silicas as bifunctional catalyst for CO2 cycloaddition reaction under cocatalyst free conditions.ACS Sustain Chem Eng2018;6:9237-45

[15]

Miralda CM,Zhu M,Carreon MA.Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate.ACS Catal2012;2:180-3

[16]

Zhu M,Bhogeswararao S,Carreon MA.Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and styrene oxide.Catal Commun2013;32:36-40

[17]

Ding M.Incorporation of imidazolium-based poly(ionic liquid)s into a metal-organic framework for CO2 capture and conversion.ACS Catal2018;8:3194-201

[18]

Sun Q,Perman J,Ma S.Flexibility matters: cooperative active sites in covalent organic framework and threaded ionic polymer.J Am Chem Soc2016;138:15790-6

[19]

Zhi Y,Feng X.Covalent organic frameworks: efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO2 under mild conditions.J Mater Chem A2018;6:374-82

[20]

Sun Q,Meng X.Porous polymer catalysts with hierarchical structures.Chem Soc Rev2015;44:6018-34

[21]

Zhang Y.Functional porous organic polymers for heterogeneous catalysis.Chem Soc Rev2012;41:2083-94

[22]

Ma D,Liu K,Li C.Di-ionic multifunctional porous organic frameworks for efficient CO2 fixation under mild and co-catalyst free conditions.Green Chem2018;20:5285-91

[23]

Liu J,Cheung O,Sun Z.Highly porous metalloporphyrin covalent ionic frameworks with well-defined cooperative functional groups as excellent catalysts for CO2 cycloaddition.Chemistry2019;25:9052-9

[24]

Bhanja P,Bhaumik A.Porous organic polymers for CO2 storage and conversion reactions.ChemCatChem2019;11:244-57

[25]

Li B,Wang W.A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker.Macromolecules2011;44:2410-4

[26]

Gu Y,Li T.Low-cost hypercrosslinked polymers by direct knitting strategy for catalytic applications.Adv Funct Mater2021;31:2008265

[27]

Tan L.Functionalized hierarchical porous polymeric monoliths as versatile platforms to support uniform and ultrafine metal nanoparticles for heterogeneous catalysis.Chem Eng J2020;390:124485

[28]

Gao TN,Wu W.Solvent-induced self-assembly strategy to synthesize well-defined hierarchically porous polymers.Adv Mater2019;31:1806254

[29]

Wang S,Shu Y.Layered microporous polymers by solvent knitting method.Sci Adv2017;3:e1602610 PMCID:PMC5376128

[30]

Li J,Ji T.Porous metallosalen hypercrosslinked ionic polymers for cooperative CO2 cycloaddition conversion.Ind Eng Chem Res2020;59:676-84

[31]

Liao X,Li Z.Tailoring hypercrosslinked ionic polymers with high ionic density for rapid conversion of CO2 into cyclic carbonates at low pressure.Chem Eng J2023;471:144455

[32]

Wang S,Zhang C,Li T.A novel metalporphyrin-based microporous organic polymer with high CO2 uptake and efficient chemical conversion of CO2 under ambient conditions.J Mater Chem A2017;5:1509-15

[33]

Xu W,Yang Y.Construction of aluminum-porphyrin-based hypercrosslinked ionic polymers (HIPs) by direct knitting approach for CO2 capture and in-situ conversion to cyclic carbonates.ChemCatChem2023;15:e202201441

[34]

Kunitski M,Huber P.Double-slit photoelectron interference in strong-field ionization of the neon dimer.Nat Commun2019;10:1 PMCID:PMC6315036

[35]

Zhan Z,Huang Q.Grafting hypercrosslinked polymers on TiO2 surface for anchoring ultrafine Pd nanoparticles: dramatically enhanced efficiency and selectivity toward photocatalytic reduction of CO2 to CH4.Small2022;18:e2105083

[36]

Manigrasso J,Genna V.Author correction: visualizing group II intron dynamics between the first and second steps of splicing.Nat Commun2022;13:1 PMCID:PMC8727560

[37]

Chen Y,Xu Q,Zhou X.State-of-the-art aluminum porphyrin-based heterogeneous catalysts for the chemical fixation of CO2 into cyclic carbonates at ambient conditions.ChemCatChem2017;9:767-73

[38]

Yuan YC,Schulz E.Making chiral salen complexes work with organocatalysts.Chem Rev2022;122:8841-83

[39]

Liao X,Wang Z.A novel crosslinker for synthesizing hypercrosslinked ionic polymers containing activating groups as efficient catalysts for the CO2 cycloaddition reaction.Sustain Energy Fuels2022;6:2846-57

[40]

Li HB,Wang FX.Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials.Nat Commun2013;4:1894 PMCID:PMC3674274

[41]

Li P,Liu J,Li Y.Highly effective carbon fixation via catalytic conversion of CO2 by an acylamide-containing metal-organic framework.Chem Mater2017;29:9256-61

[42]

Dai Z,Liu X.Metalated porous porphyrin polymers as efficient heterogeneous catalysts for cycloaddition of epoxides with CO2 under ambient conditions.J Catal2016;338:202-9

[43]

Li J,Lin H.Cobalt-salen-based porous ionic polymer: the role of valence on cooperative conversion of CO2 to cyclic carbonate.ACS Appl Mater Interfaces2020;12:609-18

[44]

Xie Y,Fu Y.Hypercrosslinked mesoporous poly(ionic liquid)s with high ionic density for efficient CO2 capture and conversion into cyclic carbonates.J Mater Chem A2018;6:6660-6

[45]

Ma Y,Sun W.Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration.Appl Catal B Environ2020;270:118856

[46]

Liu M,Huang J.O-containing hyper-cross-linked polymers and porous carbons for CO2 capture.Micropor Mesopor Mater2018;264:104-11

[47]

Liao C,Liu B,Wang X.Phenylamino-, phenoxy-, and benzenesulfenyl-linked covalent triazine frameworks for CO2 capture.ACS Appl Nano Mater2020;3:2889-98

[48]

Shao L,Liu N.Selectable microporous carbons derived from poplar wood by three preparation routes for CO2 capture.ACS Omega2020;5:17450-62 PMCID:PMC7377076

[49]

Shao L,Sang Y,Chen J.Nitrogen-doped ultrahigh microporous carbons derived from two nitrogen-containing post-cross-linked polymers for efficient CO2 capture.J Chem Eng Data2020;65:2238-50

[50]

Yang K,Zhang C.Recent advances in CdS-based photocatalysts for CO2 photocatalytic conversion.Chem Eng J2021;418:129344

[51]

Shen Y,Zhu H.Hierarchical porous organometallic polymers fabricated by direct knitting: recyclable single-site catalysts with enhanced activity.Adv Mater2020;32:e1905950

[52]

Wen D,Yang S,Tu T.Direct knitting boosts the stability and catalytic activity of NHC-Au complexes towards valorization of SO2 and CO2.J Catal2023;418:64-9

[53]

Nunes P,Marques F.Copper complexes with 1,10-phenanthroline derivatives: underlying factors affecting their cytotoxicity.Inorg Chem2020;59:9116-34

[54]

Pu Y,Stevenson SG.Solution processable phosphorescent rhenium(i) dendrimers.J Mater Chem2007;17:4255-64

[55]

Ge Z,Ando S.Synthesis and properties of 3,8-Bis[4-(9H-carbazol-9-yl)phenyl]-1,10-phenanthroline for phosphorescent OLEDs.Chem Lett2008;37:262-3

[56]

Chen J,Zhong M.Hierarchical mesoporous organic polymer with an intercalated metal complex for the efficient synthesis of cyclic carbonates from flue gas.Green Chem2016;18:6493-500

[57]

Li H,Shao P.Synthesis of covalent organic frameworks via in situ salen skeleton formation for catalytic applications.J Mater Chem A2019;7:5482-92

[58]

Chen J,Tao L.The cooperation of porphyrin-based porous polymer and thermal-responsive ionic liquid for efficient CO2 cycloaddition reaction.Green Chem2018;20:903-11

[59]

Ouyang H,Du J,Tan B.Creating chemisorption sites for enhanced CO2 chemical conversion activity through amine modification of metalloporphyrin-based hypercrosslinked polymers.Chem Eng J2022;431:134326

[60]

Dong Y,Wang S,Yang Q.Immobilizing isatin-schiff base complexes in NH2 -UiO-66 for highly photocatalytic CO2 reduction.ACS Catal2023;13:2547-54

[61]

Cui J,Meng B.A novel cobalt-anchored covalent organic framework for photocatalytic conversion of CO2 into widely adjustable syngas.J Mater Chem A2022;10:13418-27

[62]

Yang Y,Zhang H.Decoration of active sites in covalent-organic framework: an effective strategy of building efficient photocatalysis for CO2 reduction.ACS Sustain Chem Eng2021;9:13376-84

[63]

Zhong W,Li L.A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO.J Am Chem Soc2019;141:7615-21

[64]

Han B,Zhong Z,Deng H.Rational design of FeNi bimetal modified covalent organic frameworks for photoconversion of anthropogenic CO2 into widely tunable syngas.Small2020;16:e2002985

[65]

Hu X,Wang S,Tan B.Integrating single Co sites into crystalline covalent triazine frameworks for photoreduction of CO2.Chem Commun2022;58:8121-4

AI Summary AI Mindmap
PDF

48

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/