Research progress of photoelectrochemical conversion of CO2 to C2+ products

Xia Jiang , Rui Chen , Yan-Xin Chen , Can-Zhong Lu

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (3) : 46

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (3) :46 DOI: 10.20517/cs.2024.03
review-article

Research progress of photoelectrochemical conversion of CO2 to C2+ products

Author information +
History +
PDF

Abstract

The reduction of CO2 to C2+ products using photoelectrochemistry (PEC) is significant and highly challenging. However, systematic summaries on PEC CO2 conversion into C2+ products are lacking. Therefore, this paper systematically reviews the current research status of the PEC CO2 conversion for the preparation of C2+ products, including the pathways of C2+ products, the usage of catalysts and reactors, and methods for improving C2+ product selectivity. Besides, the deficiencies in current research are analyzed, and future developments are discussed.

Keywords

Photoelectrochemistry / C2+ products / CO2 conversion

Cite this article

Download citation ▾
Xia Jiang, Rui Chen, Yan-Xin Chen, Can-Zhong Lu. Research progress of photoelectrochemical conversion of CO2 to C2+ products. Chemical Synthesis, 2024, 4(3): 46 DOI:10.20517/cs.2024.03

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou W,Shen S.Progress in photoelectrocatalytic reduction of carbon dioxide.Acta Phys Chim Sin2020;36:1906048

[2]

Tang B.An overview of solar-driven photoelectrochemical CO2 Conversion to chemical fuels.ACS Catal2022;12:9023-57

[3]

Xu S,Zheng J.Advances in biomimetic photoelectrocatalytic reduction of carbon dioxide (Adv. Sci. 31/2022).Adv Sci2022;9:2270196 PMCID:PMC9631084

[4]

Chen P,Zhou Y.Photoelectrocatalytic carbon dioxide reduction: fundamental, advances and challenges.Nano Mater Sci2021;3:344-67

[5]

Zhang N,Gao C.Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels.Sci China Mater2018;61:771-805

[6]

Ochedi FO,Yu J,Liu Y.Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of carbon dioxide: a review.Environ Chem Lett2021;19:941-67

[7]

Kan M,Hao S.System engineering enhances photoelectrochemical CO2 reduction.J Phys Chem C2022;126:1689-700

[8]

Chang X,Yang P,Gong J.The development of cocatalysts for photoelectrochemical CO2 reduction.Adv Mater2019;31:e1804710

[9]

Dutta S,Chongdar S.Dehydrogenase-functionalized interfaced materials in electroenzymatic and photoelectroenzymatic CO2 reduction.ACS Sustain Chem Eng2022;10:6141-56

[10]

Li Y,Huang H.Metal-enhanced strategies for photocatalytic and photoelectrochemical CO2 reduction.Chem Eng J2023;457:141179

[11]

Liu L,Huang H.Junction engineering for photocatalytic and photoelectrocatalytic CO2 reduction.Solar RRL2021;5:2000430

[12]

Brillas E,Garcia-segura S.Biomimicry designs for photoelectrochemical systems: Strategies to improve light delivery efficiency.Curr Opin Electrochem2021;26:100660

[13]

Devi P,Singh JP.Advancement in electrochemical, photocatalytic, and photoelectrochemical CO2 reduction: recent progress in the role of oxygen vacancies in catalyst design.J CO2 Util2022;65:102211

[14]

Putri LK,Ong WJ,Mohamed AR.Toward excellence in photocathode engineering for photoelectrochemical CO2 reduction: design rationales and current progress.Adv Energy Mater2022;12:2201093

[15]

Li Y,Huang H.Defective photocathode: fundamentals, construction, and catalytic energy conversion.Adv Funct Mater2023;33:2304925

[16]

Pawar AU,Nguyen-le M.General review on the components and parameters of photoelectrochemical system for CO2 reduction with in situ analysis.ACS Sustainable Chem Eng2019;7:7431-55

[17]

King AJ,Bell AT.Establishing the role of operating potential and mass transfer in multicarbon product generation for photoelectrochemical CO2 reduction cells using a Cu catalyst.ACS Energy Lett2022;7:2694-700

[18]

Verma S.Emerging single-atom catalysts and nanomaterials for photoelectrochemical reduction of carbon dioxide to value-added products: a review of the current state-of-the-art and future perspectives.Energy Fuels2023;37:5712-42

[19]

Hiragond CB,Kim H,In S.Elemental-doped catalysts for photoelectrochemical CO2 conversion to solar fuels.Solar RRL2024;8:2400022

[20]

Bienkowski K,Trinh L.Halide perovskites for photoelectrochemical water splitting and CO2 reduction: challenges and opportunities.ACS Catal2024;14:6603-22

[21]

Li CF,Zhang ZR,Pan WG.Converting CO2 into value-added products by Cu2O-based catalysts: from photocatalysis, electrocatalysis to photoelectrocatalysis.Small2023;19:e2207875

[22]

Zhang W,Chen Z.Rational-designed principles for electrochemical and photoelectrochemical upgrading of CO2 to value-added chemicals.Adv Sci2022;9:e2105204 PMCID:PMC8948570

[23]

Zheng Y,Zhou X,Jaroniec M.Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts.J Am Chem Soc2019;141:7646-59

[24]

Zheng W,Li Z.Designs of tandem catalysts and cascade catalytic systems for CO2 upgrading.Angew Chem Int Ed Engl2023;62:e202307283

[25]

Han GH,Park G.Recent advances in electrochemical, photochemical, and photoelectrochemical reduction of CO2 to C2+ products.Small2023;19:e2205765

[26]

Otgonbayar Z,Oh WC.Photoelectrocatalytic CO2 reduction with ternary nanocomposite of MXene (Ti3C2)-Cu2O-Fe3O4: comprehensive utilization of electrolyte and light-wavelength.Chem Eng J2023;464:142716

[27]

Landaeta E,Schultz ZD.Mechanistic study of plasmon-assisted in situ photoelectrochemical CO2 reduction to acetate with a Ag/Cu2O nanodendrite electrode.ACS Catal2023;13:1638-48

[28]

Liang H,Li Z,Zhang T.Photoelectrochemical CO2 reduction with copper-based photocathodes.J CO2 Util2024;79:102639

[29]

Guo X,Yang Z.Boosting C2+ production from photoelectrochemical CO2 reduction on gallium doped Cu2O.Chem Eng J2023;471:144539

[30]

Wang B,Dong Y.Cu@porphyrin-COFs nanorods for efficiently photoelectrocatalytic reduction of CO2.Chem Eng J2020;396:125255

[31]

Wang J,Yu X.Photoelectrocatalytic reduction of CO2 to paraffin using p-n heterojunctions.iScience2020;23:100768 PMCID:PMC6941872

[32]

Cao H,Lu Y.Photoelectrocatalytic reduction of CO2 over CuBi2O4/TiO2-NTs under simulated solar irradiation.ChemistrySelect2020;5:5137-45

[33]

Lu Y,Xu S.CO2 photoelectroreduction with enhanced ethanol selectivity by high valence rhenium-doped copper oxide composite catalysts.J Colloid Interface Sci2021;599:497-506

[34]

Zhou S,Huang J.Accelerating electron-transfer and tuning product selectivity through surficial vacancy engineering on CZTS/CdS for photoelectrochemical CO2 reduction.Small2021;17:e2100496

[35]

de Souza MKR,Fortunato GV.Combination of Cu-Pt-Pd nanoparticles supported on graphene nanoribbons decorating the surface of TiO2 nanotube applied for CO2 photoelectrochemical reduction.J Environ Chem Eng2021;9:105803

[36]

Nandal N,Abraham BM.CO2 to ethanol: a selective photoelectrochemical conversion using a ternary composite consisting of graphene oxide/copper oxide and a copper-based metal-organic framework.Electrochim Acta2022;404:139612

[37]

Merino-garcia I,Irabien A.Efficient photoelectrochemical conversion of CO2 to ethylene and methanol using a Cu cathode and TiO2 nanoparticles synthesized in supercritical medium as photoanode.J Environ Chem Eng2022;10:107441

[38]

Wang K,Wang Q.Asymmetric Cu-N sites on copper oxide photocathode for photoelectrochemical CO2 reduction towards C2 products.Appl Catal B Environ2022;316:121616

[39]

Lu M,Xue H,Jiang T.0D/1D CuFeO2/CuO nanowire heterojunction arrays for improved photoelectrocatalytic reduction of CO2 to ethanol.J Alloys Compd2023;960:170626

[40]

Kim C,Aloni S,Weber AZ.Codesign of an integrated metal-insulator-semiconductor photocathode for photoelectrochemical reduction of CO2 to ethylene.Energy Environ Sci2023;16:2968-76

[41]

Cardoso J,de Souza M.The effective role of ascorbic acid in the photoelectrocatalytic reduction of CO2 preconcentrated on TiO2 nanotubes modified by ZIF-8.J Electroanal Chem2020;856:113384

[42]

Bergamini L,Gondolini A.CsPbBr3/platinum and CsPbBr3/graphite hybrid photoelectrodes for carbon dioxide conversion to oxalic acid.Solar Energy2023;254:213-22

[43]

Zhang Y,Xu Y.Artificial photosynthesis of alcohols by multi-functionalized semiconductor photocathodes.ChemSusChem2017;10:1742-8

[44]

Wang J,Nie R.Photoelectrocatalytic reduction of CO2 to chemicals via ZnO@Nickel foam: controlling C-C coupling by ligand or morphology.Top Catal2018;61:1563-73

[45]

Han B,Yan C.The photoelectrocatalytic CO2 reduction on TiO2@ZnO heterojunction by tuning the conduction band potential.Electrochim Acta2018;285:23-9

[46]

Wang J,Yang B,Chen J.In situ grown heterojunction of Bi2WO6/BiOCl for efficient photoelectrocatalytic CO2 reduction.J Catal2019;377:209-17

[47]

Wang L,Fang R.Photoelectrocatalytic CO2 reduction to ethanol via graphite-supported and functionalized TiO2 nanowires photocathode.J Photochem Photobiol A Chem2020;391:112368

[48]

Yu X,Chen Y,Jing H.P-doped WO3 semiconductor with enhanced conduction band on highly efficient photoelectrocatalytic reduction of CO2.Chinese Sci Bull2020;66:825-32

[49]

Liu C,Wan W.Different behaviors on the external and inner surface of hollow CdS/VS-MoS2 heterojunctions in photoelectrocatalytic CO2 reduction via SH-assisted mechanism.Appl Catal B Environ2023;325:122394

[50]

Xu Y,Lei S.In situ grown two-dimensional TiO2/Ti3CN MXene heterojunction rich in Ti3+ species for highly efficient photoelectrocatalytic CO2 reduction.Chem Eng J2023;452:139392

[51]

Wei Y,Zhang Q.Photoelectrocatalytic reduction of CO2 catalyzed by TiO2/TiN nanotube heterojunction: nitrogen assisted active hydrogen mechanism.Chinese J Catal2023;47:243-53

[52]

Cao Y,Wan W.Photoelectrochemical reduction of CO2 catalyzed by a 3D core-shell NiMoO4@ZnO heterojunction with bicentre at the (111) plane and thermal electron assistance.J Mater Chem A2023;11:4230-7

[53]

Wan W,Wei Y.p-n heterojunctions of Si@WO3 mimicking thylakoid for photoelectrocatalytic CO2 reduction to C2+ products - morphology control.Chem Eng J2023;454:140122

[54]

Kumaravel V,Pillai SC.Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products.ACS Energy Lett2020;5:486-519

[55]

Chu S,Pan Y,Zhang H.The impact of flue gas impurities and concentrations on the photoelectrochemical CO2 reduction.J CO2 Util2022;60:101993

[56]

Jiang X,Chen YX.Proton exchange membrane fuel cells: application for value-added chemical productions.Chem Synth2024;4:6

[57]

Gao D,Li H,Wang G.Designing electrolyzers for electrocatalytic CO2 reduction.Acta Phys Chim Sin2021;37:2009021

[58]

Castro S,Irabien A.Photoelectrochemical reactors for CO2 utilization.ACS Sustainable Chem Eng2018;6:15877-94

AI Summary AI Mindmap
PDF

184

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/