Organic cage-based frameworks: from synthesis to applications

Jing-Wang Cui , Jing-Hua Yang , Jian-Ke Sun

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (2) : 30

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (2) :30 DOI: 10.20517/cs.2024.01
review-article

Organic cage-based frameworks: from synthesis to applications

Author information +
History +
PDF

Abstract

The investigation of organic cage-based frameworks (OCFs) has attracted increasing attention over the past decade due to their versatile synthetic methods and broad property range resulting from the unique combination of porous organic cages (POCs) with diverse framework materials, including porous organic polymers (POPs), metal-organic frameworks (MOFs), and supramolecular organic frameworks (SOFs). Nevertheless, a comprehensive summary of the research advancements in OCFs remains elusive in the literature. This review addresses this gap by providing a detailed overview of the development of OCF-based materials from both synthetic and applicative perspectives. The discussion begins with systematically exploring design principles and common strategies for elaborating OCFs, achieved by rational selection of bond-forming routes suitable for various POC monomers, including covalent bonds, coordination bonds, and supramolecular interactions. Subsequently, the review highlights the functional attributes derived from the distinctive structural features of OCFs, showcasing their task-specific applications in adsorption/separation, catalysis, membrane technology, and other fields. Lastly, the article summarizes the opportunities and challenges anticipated as the exploration of the OCF family continues to advance in material science.

Keywords

Porous organic cages / porous frameworks / material synthesis / applications

Cite this article

Download citation ▾
Jing-Wang Cui, Jing-Hua Yang, Jian-Ke Sun. Organic cage-based frameworks: from synthesis to applications. Chemical Synthesis, 2024, 4(2): 30 DOI:10.20517/cs.2024.01

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tozawa T,Swamy SI.Porous organic cages.Nat Mater2009;8:973-8

[2]

Mastalerz M.Shape-persistent organic cage compounds by dynamic covalent bond formation.Angew Chem Int Ed Engl2010;49:5042-53

[3]

Hasell T.Porous organic cages: soluble, modular and molecular pores.Nat Rev Mater2016;1:16053

[4]

Mastalerz M.Porous shape-persistent organic cage compounds of different size, geometry, and function.Acc Chem Res2018;51:2411-22

[5]

Montà-González G,Martínez-Máñez R.Purely covalent molecular cages and containers for guest encapsulation.Chem Rev2022;122:13636-708 PMCID:PMC9413269

[6]

Mukhopadhyay RD,Koo J.Porphyrin boxes.Acc Chem Res2018;51:2730-8

[7]

Liu M,Little MA.Barely porous organic cages for hydrogen isotope separation.Science2019;366:613-20

[8]

Acharyya K.Organic imine cages: molecular marriage and applications.Angew Chem Int Ed Engl2019;58:8640-53

[9]

He A,Wu Y.A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving.Nat Mater2022;21:463-70 PMCID:PMC8971131

[10]

Hu D,Liu M.Recent advances in the applications of porous organic cages.Chem Commun2022;58:11333-46

[11]

Yang X,Stoddart JF.Porous organic cages.Chem Rev2023;123:4602-34 PMCID:PMC10141292

[12]

Drożdż W,Stefankiewicz AR.Dynamic cages-towards nanostructured smart materials.Angew Chem Int Ed Engl2023;62:e202307552

[13]

Mastalerz M.Permanent porous materials from discrete organic molecules-towards ultra-high surface areas.Chemistry2012;18:10082-91

[14]

Jiang S,Hasell T.Porous organic molecular solids by dynamic covalent scrambling.Nat Commun2011;2:207

[15]

Song Q,Hasell T.Porous organic cage thin films and molecular-sieving membranes.Adv Mater2016;28:2629-37

[16]

McKeown NB.Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage.Chem Soc Rev2006;35:675-83

[17]

Tan L.Correction: Hypercrosslinked porous polymer materials: design, synthesis, and applications.Chem Soc Rev2017;46:3481

[18]

Lee JM.Advances in conjugated microporous polymers.Chem Rev2020;120:2171-214 PMCID:PMC7145355

[19]

Wang XX,Zheng LJ.Polymers with intrinsic microporosity as solid ion conductors for solid-state lithium batteries.Angew Chem Int Ed Engl2023;62:e202308837

[20]

Zhang W,Dai S.Reconstructed covalent organic frameworks.Nature2022;604:72-9 PMCID:PMC8986529

[21]

Yang S,Zhong H,Wang X.Transformation of covalent organic frameworks from N-acylhydrazone to oxadiazole linkages for smooth electron transfer in photocatalysis.Angew Chem Int Ed Engl2022;61:e202115655

[22]

Chen Z,Hao M.Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance.Nat Commun2023;14:1106 PMCID:PMC9970987

[23]

Hu F,Liu Y.Aqueous sol-gel synthesis and shaping of covalent organic frameworks.J Am Chem Soc2023;145:27718-27

[24]

Huang N,Jiang D.Covalent organic frameworks: a materials platform for structural and functional designs.Nat Rev Mater2016;1:16068

[25]

Furukawa H,O’Keeffe M.The chemistry and applications of metal-organic frameworks.Science2013;341:1230444

[26]

Howarth AJ,Li P.Chemical, thermal and mechanical stabilities of metal–organic frameworks.Nat Rev Mater2016;1:15018

[27]

Lan G,Shi W,Veroneau SS.Biomimetic active sites on monolayered metal–organic frameworks for artificial photosynthesis.Nat Catal2022;5:1006-18

[28]

Wang KY,Hsu YC.Bioinspired framework catalysts: from enzyme immobilization to biomimetic catalysis.Chem Rev2023;123:5347-420 PMCID:PMC10853941

[29]

Lin RB,Li P,Zhou W.Multifunctional porous hydrogen-bonded organic framework materials.Chem Soc Rev2019;48:1362-89 PMCID:PMC11061856

[30]

Hisaki I,Gomez E.Acid responsive hydrogen-bonded organic frameworks.J Am Chem Soc2019;141:2111-21

[31]

Yuan Z,Chen L.Sticked-layer strategy to a flexible-robust hydrogen-bonded organic framework for efficient C2H2/CO2 separation.CCS Chem2024;6:663-71

[32]

Yin Q,Si DH.Metallization-prompted robust porphyrin-based hydrogen-bonded organic frameworks for photocatalytic CO2 reduction.Angew Chem Int Ed Engl2022;61:e202115854

[33]

Ma JX,Chen YF.Cage based crystalline covalent organic frameworks.J Am Chem Soc2019;141:3843-8

[34]

Hasell T,Jelfs KE,Cooper AI.Porous organic cage nanocrystals by solution mixing.J Am Chem Soc2012;134:588-98

[35]

Wang H,Sun N,Jiang J.Post-synthetic modification of porous organic cages.Chem Soc Rev2021;50:8874-86

[36]

Jin Y,Jin A,Noble RD.Highly CO2-selective organic molecular cages: what determines the CO2 selectivity.J Am Chem Soc2011;133:6650-8

[37]

Bacskay GB,Nordholm S.The mechanism of covalent bonding.J Chem Educ1997;74:1494

[38]

Holst JR,Cooper AI.Porous organic molecules.Nat Chem2010;2:915-20

[39]

Jin Y,Mccaffrey R,Noble RD.Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs).Chem Sci2012;3:874-7

[40]

Wang Z,Zhai TL.Networked cages for enhanced CO2 capture and sensing.Adv Sci2018;5:1800141 PMCID:PMC6051374

[41]

Wang Z,Ma H.Molecular engineering for organic cage frameworks with fixed pore size to tune their porous properties and improve CO2 capture.ACS Appl Polym Mater2021;3:171-7

[42]

Buyukcakir O,Coskun A.Thinking outside the cage: controlling the extrinsic porosity and gas uptake properties of shape-persistent molecular cages in nanoporous polymers.Chem Mater2015;27:4149-55

[43]

Zhai Z,Zhao N.Polyarylate membrane constructed from porous organic cage for high-performance organic solvent nanofiltration.J Membrane Sci2020;595:117505

[44]

Jiang Z,Sheng M.A highly permeable porous organic cage composite membrane for gas separation.J Mater Chem A2023;11:6831-41

[45]

Côté AP,Ockwig NW,Matzger AJ.Porous, crystalline, covalent organic frameworks.Science2005;310:1166-70

[46]

Diercks CS.The atom, the molecule, and the covalent organic framework.Science2017;355:eaal1585

[47]

Qian C,Teo WL.Imine and imine-derived linkages in two-dimensional covalent organic frameworks.Nat Rev Chem2022;6:881-98

[48]

Wang S,Zhang Z.Designing and molding covalent organic frameworks for separation applications.Acc Mater Res2023;4:953-67

[49]

Baek K,Roy I,Kim K.Self-assembly of nanostructured materials through irreversible covalent bond formation.Acc Chem Res2015;48:2221-9

[50]

Zhu Q,Clowes R.3D cage COFs: a dynamic three-dimensional covalent organic framework with high-connectivity organic cage nodes.J Am Chem Soc2020;142:16842-8 PMCID:PMC7586335

[51]

Ji C,Wang W.Tunable cage-based three-dimensional covalent organic frameworks.CCS Chem2022;4:3095-105

[52]

Swamy SI,Jones JTA.A metal-organic framework with a covalently prefabricated porous organic linker.J Am Chem Soc2010;132:12773-5

[53]

Zhang L,Hang C,Huang W.From discrete molecular cages to a network of cages exhibiting enhanced CO2 adsorption capacity.Angew Chem Int Ed Engl2017;56:7787-91

[54]

Hong S,Jia J.Porphyrin boxes: rationally designed porous organic cages.Angew Chem Int Ed Engl2015;54:13241-4

[55]

Benke BP,Kim Y.Iodide-selective synthetic ion channels based on shape-persistent organic cages.J Am Chem Soc2017;139:7432-5

[56]

Kim Y,Hwang IC.Rational design and construction of hierarchical superstructures using shape-persistent organic cages: porphyrin box-based metallosupramolecular assemblies.J Am Chem Soc2018;140:14547-51

[57]

Yang P,Ma JP.Monolayer nanosheets exfoliated from cage-based cationic metal-organic frameworks.Inorg Chem2022;61:1521-9

[58]

Huang YG,Wu MY.Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework.Nat Commun2016;7:11564 PMCID:PMC4865851

[59]

Zhang G,Zhou Y.Processing supramolecular framework for free interconvertible liquid separation.Nat Commun2020;11:425 PMCID:PMC6976700

[60]

Hua M,Gong Y,Yang Z.Hierarchically porous organic cages.Angew Chem Int Ed Engl2021;60:12490-7

[61]

Zhang SY,Lee HC.Ionic organic cage-encapsulating phase-transferable metal clusters.Chem Sci2019;10:1450-6 PMCID:PMC6354838

[62]

Tian J,Zhang DW,Li ZT.Supramolecular organic frameworks: engineering periodicity in water through host-guest chemistry.Chem Commun2016;52:6351-62

[63]

Li P,Stoddart JF.Hydrogen-bonded organic frameworks: a rising class of porous molecular materials.Acc Mater Res2020;1:77-87

[64]

Wang B,Zhang Z,Chen B.Hydrogen-bonded organic frameworks as a tunable platform for functional materials.J Am Chem Soc2020;142:14399-416

[65]

Yu D,Ren J.Hydrogen-bonded organic frameworks: new horizons in biomedical applications.Chem Soc Rev2023;52:7504-23

[66]

Han B,Wang C.Postsynthetic metalation of a robust hydrogen-bonded organic framework for heterogeneous catalysis.J Am Chem Soc2019;141:8737-40 PMCID:PMC7928070

[67]

Zhu Q,Widdowson DE.Analogy powered by prediction and structural invariants: computationally led discovery of a mesoporous hydrogen-bonded organic cage crystal.J Am Chem Soc2022;144:9893-901 PMCID:PMC9490843

[68]

Zhu Q,Zhao C.Soft hydrogen-bonded organic frameworks constructed using a flexible organic cage hinge.J Am Chem Soc2023;145:23352-60 PMCID:PMC10603795

[69]

Metrangolo P,Pilati T,Terraneo G.Halogen bonding in supramolecular chemistry.Angew Chem Int Ed Engl2008;47:6114-27

[70]

Dumele O,Diederich F.Halogen bonding molecular capsules.Angew Chem Int Ed Engl2015;54:12339-44

[71]

Nieland E,Hohloch S.Supramolecular networks by imine halogen bonding.Chem Commun2022;58:5233-6

[72]

Tan L,Sun JK.Electrostatically cooperative host-in-host of metal cluster $$ \subset $$ ionic organic cages in nanopores for enhanced catalysis.Nat Commun2022;13:1471 PMCID:PMC8933400

[73]

Dechnik J,Doonan CJ,Sumby CJ.Mixed-matrix membranes.Angew Chem Int Ed Engl2017;56:9292-310

[74]

Chen T,Wei Y,Zhu J.Exploring the potential of porous organic cage membranes: recent advances and applications.Sep Purif Technol2024;330:125440

[75]

Evans JD,Hill MR,Thornton AW.Feasibility of mixed matrix membrane gas separations employing porous organic cages.J Phys Chem C2014;118:1523-9

[76]

Kong X.An atomistic simulation study on POC/PIM mixed-matrix membranes for gas separation.J Phys Chem C2019;123:15113-21

[77]

Bushell AF,Attfield MP.Nanoporous organic polymer/cage composite membranes.Angew Chem Int Ed Engl2013;52:1253-6 PMCID:PMC3734621

[78]

Zhu G,Rivera MP.Molecularly mixed composite membranes for advanced separation processes.Angew Chem Int Ed Engl2019;58:2638-43

[79]

Mao H.Mixed-matrix membranes incorporated with porous shape-persistent organic cages for gas separation.J Colloid Interface Sci2017;490:29-36

[80]

Ding M,Jiang HL.Carbon capture and conversion using metal-organic frameworks and MOF-based materials.Chem Soc Rev2019;48:2783-828

[81]

Li J,Mccarthy MC.Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks.Coord Chem Rev2011;255:1791-823

[82]

Mohammed N,Islam MS.Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals.Chem Eng J2021;417:129237

[83]

Zhang Q,Chen S,Jin W.Mixed-matrix membranes with soluble porous organic molecular cage for highly efficient C3H6/C3H8 separation.J Membrane Sci2020;611:118288

[84]

Zhou B,Zhang Q,Jin W.Sharply promoted CO2 diffusion in a mixed matrix membrane with hierarchical supra-nanostructured porous coordination polymer filler.J Membrane Sci2020;597:117772

[85]

Luo D,Tian J,Chi X.Reversible iodine capture by nonporous adaptive crystals of a bipyridine cage.J Am Chem Soc2022;144:113-7

[86]

Cheng K,Li Z,Zhao Y.Linking nitrogen-rich organic cages into isoreticular covalent organic frameworks for enhancing iodine adsorption capability.ACS Mater Lett2023;5:1546-55

[87]

Cheng K,Wang JR,Zhao Y.From supramolecular organic cages to porous covalent organic frameworks for enhancing iodine adsorption capability by fully exposed nitrogen-rich sites.Small2023;19:e2301998

[88]

Zhao XJ,Sun JK.Hierarchically porous poly(ionic liquid) - organic cage composite membrane for efficient iodine capture.Chemistry2022;28:e202201199

[89]

Hao S,Wen J.Progress in adsorptive membranes for separation - A review.Sep Purif Technol2021;255:117772

[90]

Xu T,Hou L.Highly ion-permselective porous organic cage membranes with hierarchical channels.J Am Chem Soc2022;144:10220-9

[91]

Li M,Pan B.Cage-based covalent organic framework for the effective and efficient removal of malachite green from wastewater.ACS Appl Mater Interfaces2022;14:57180-8

[92]

Srivastava S,Roy D.Toxicological effects of malachite green.Aquat Toxicol2004;66:319-29

[93]

Bhandari P.Covalent organic cages in catalysis.ACS Catal2023;13:6126-43

[94]

Sun JK,Akita T.Toward homogenization of heterogeneous metal nanoparticle catalysts with enhanced catalytic performance: soluble porous organic cage as a stabilizer and homogenizer.J Am Chem Soc2015;137:7063-6

[95]

Yang X,Kitta M,Xu Q.Encapsulating highly catalytically active metal nanoclusters inside porous organic cages.Nat Catal2018;1:214-20

[96]

Song Q,David Wang W.Ru clusters confined in Hydrogen-bonded organic frameworks for homogeneous catalytic hydrogenation of N-heterocyclic compounds with heterogeneous recyclability.J Catal2022;406:19-27

[97]

Zhu L,Sun JK.Cooperative cage hybrids enabled by electrostatic marriage.Chem Commun2023;59:6020-3

[98]

Li M,Yan F,Hong M.A cage-based covalent organic framework for drug delivery.New J Chem2021;45:3343-8

[99]

Alimi LO,Moosa B,Khashab NM.Vapor-triggered mechanical actuation in polymer composite films based on crystalline organic cages.Angew Chem Int Ed Engl2022;61:e202212596

[100]

Han R.Composite proton-exchange membrane with highly improved proton conductivity prepared by in situ crystallization of porous organic cage.ACS Appl Mater Interfaces2018;10:18351-8

[101]

Liu SH,Wu C,Cao X.Sub-8 nm networked cage nanofilm with tunable nanofluidic channels for adaptive sieving.Nat Commun2024;15:2478 PMCID:PMC10954766

AI Summary AI Mindmap
PDF

81

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/