Crystal facet engineering of electrocatalysts for nitrate reduction to ammonia: recent advances and future perspectives
Yuwei Zhang , Hanfeng Liang
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (3) : 39
Crystal facet engineering of electrocatalysts for nitrate reduction to ammonia: recent advances and future perspectives
Ammonia (NH3) is an important chemical feedstock and a clean energy carrier that has a pivotal impact on the sustainable energy circle. Its electrocatalytic production is evolving into a green alternative to the traditional Haber-Bosch process. A key strategy in enhancing the performance of this electrocatalytic ammonia synthesis is crystal facet engineering of electrocatalysts, which could significantly influence the reaction mechanism, kinetics, and thermodynamics. This review summarizes the recent advancements in crystal facet engineering for electrocatalytic nitrate reduction to ammonia. Through this review, we hope to shed light on the significant role of crystal facet engineering in advancing electrocatalytic ammonia production and provide useful guidance on the design of high-performance electrocatalysts.
Nitrate reduction reaction / crystal facet engineering / electrocatalysts
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
de Groot M, Koper M. The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum.J Electroanal Chem2004;562:81-94 |
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
/
| 〈 |
|
〉 |