Biological metal–organic frameworks for natural gas purification and MTO product separation

Wen Li , Dan Wang , Yi Wang , Zhaohui Shi , Junxue Liu , Lirong Zhang , Dongxu Xue , Yunling Liu

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (3) : 22

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (3) :22 DOI: 10.20517/cs.2023.69
review-article

Biological metal–organic frameworks for natural gas purification and MTO product separation

Author information +
History +
PDF

Abstract

The use of porous solid adsorbents is an effective and excellent approach for the separation and purification of methanol-to-olefins product and methane (CH4). In this particular study, a series of adenine (AD)-based biological metal–organic frameworks (Bio-MOFs) {Their general formula is Cu2(AD)2(X)2 [X = formic acid, acetic acid (AA), and propionic acid]} were proposed, which exhibited remarkable efficiency in the purification of CH4 and the separation of C3H6 from methanol-to-olefins product, ultimately yielding purified C2H4. The experimental findings demonstrate that different terminal ligands induce alterations in the pore microenvironment, consequently leading to variations in adsorption capacities and stability. Specifically, Cu-AD-AA exhibits the highest adsorption capacity and selectivity among the three MOFs, as confirmed by static adsorption isotherm testing and theoretical evaluation using ideal adsorbed solution theory (IAST) simulation. At 298 K and 1 bar, Cu-AD-AA exhibits 786 and 10.9 selectivity for C3H8/CH4 and C3H6/C2H4, respectively, surpassing the majority of MOFs materials. Furthermore, breakthrough experiments conducted in ambient conditions reveal that Cu-AD-AA possesses commendable separation capabilities, enabling one-step purification of C2H4 at varying proportions (C2H4/C3H6 = 50:50, 50:20, and 90:10), along with satisfactory recycling performance. Importantly, the synthesis of Cu-AD-AA utilizes simple and easily obtainable raw materials, thereby offering advantages such as cost-effectiveness, low toxicity, and facile synthesis that enhance its potential for industrial applications.

Keywords

Bio-MOFs / MTO product separation / natural gas purification / porous solid adsorbents

Cite this article

Download citation ▾
Wen Li, Dan Wang, Yi Wang, Zhaohui Shi, Junxue Liu, Lirong Zhang, Dongxu Xue, Yunling Liu. Biological metal–organic frameworks for natural gas purification and MTO product separation. Chemical Synthesis, 2024, 4(3): 22 DOI:10.20517/cs.2023.69

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang Y,Lin RB.Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism.Nat Chem2021;13:933-9

[2]

Jiang Y,Luan B.Benchmark single-step ethylene purification from ternary mixtures by a customized fluorinated anion-embedded MOF.Nat Commun2023;14:401 PMCID:PMC9876924

[3]

Fan W,Peh SB.Multivariate polycrystalline metal–organic framework membranes for CO2/CH4 separation.J Am Chem Soc2021;143:17716-23

[4]

Zhang Z,Evans HA.Exclusive recognition of CO2 from hydrocarbons by aluminum formate with hydrogen-confined pore cavities.J Am Chem Soc2023;145:11643-9

[5]

Ryckebosch E,Vervaeren H.Techniques for transformation of biogas to biomethane.Biomass Bioenerg2011;35:1633-45

[6]

Li L,Krishna R.Ethane/ethylene separation in a metal–organic framework with iron-peroxo sites.Science2018;362:443-6

[7]

Liu Y,Liu G.Conformation-controlled molecular sieving effects for membrane-based propylene/propane separation.Adv Mater2019;31:e1807513

[8]

Zhang Y,Zhou X,Li Z.Selective adsorption performances of UiO-67 for separation of light hydrocarbons C1, C2, and C3.Ind Eng Chem Res2017;56:8689-96

[9]

Han XH,Huang X.Syntheses of covalent organic frameworks via a one-pot suzuki coupling and schiff’s base reaction for C2H4/C3H6 separation.Angew Chem Int Ed Engl2022;61:e202202912

[10]

Tian P,Ye M.Methanol to olefins (MTO): from fundamentals to commercialization.ACS Catal2015;5:1922-38

[11]

Chen Y,Wang Y.Ultramicroporous hydrogen-bonded organic framework material with a thermoregulatory gating effect for record propylene separation.J Am Chem Soc2022;144:17033-40

[12]

Chen KJ,Mukherjee S.Synergistic sorbent separation for one-step ethylene purification from a four-component mixture.Science2019;366:241-6

[13]

Liu Y,Xiong H.Negative electrostatic potentials in a Hofmann-type metal–organic framework for efficient acetylene separation.Nat Commun2022;13:5515 PMCID:PMC9489771

[14]

Peng YL,Jin C.Efficient propyne/propadiene separation by microporous crystalline physiadsorbents.Nat Commun2021;12:5768 PMCID:PMC8486746

[15]

Wei W,Zhang Z,Xue D.Topology-guided synthesis and construction of amide-functionalized rare-earth metal–organic frameworks.Inorg Chem Commun2021;133:108896

[16]

Fang H,Zhang ZH,Xue DX.Ligand-conformer-induced formation of zirconium-organic framework for methane storage and MTO product separation.Angew Chem Int Ed Engl2021;60:16521-8

[17]

Gao S,Lu Z.Selective hysteretic sorption of light hydrocarbons in a flexible metal–organic framework material.Chem Mater2016;28:2331-40

[18]

Hiraide S,Kajiro H,Miyahara MT.High-throughput gas separation by flexible metal–organic frameworks with fast gating and thermal management capabilities.Nat Commun2020;11:3867 PMCID:PMC7400644

[19]

Fan W,Kang Z,Sun D.Isoreticular chemistry within metal–organic frameworks for gas storage and separation.Coord Chem Rev2021;443:213968

[20]

Li J,Li J,Liu Y.Recent progress on microfine design of metal–organic frameworks: structure regulation and gas sorption and separation.Adv Mater2020;32:e2002563

[21]

Hu P,Liu H.Quasi-orthogonal configuration of propylene within a scalable metal–organic framework enables its purification from quinary propane dehydrogenation byproducts.ACS Cent Sci2022;8:1159-68 PMCID:PMC9413434

[22]

Zeng H,Wang T.Orthogonal-array dynamic molecular sieving of propylene/propane mixtures.Nature2021;595:542-8

[23]

Long JR.The pervasive chemistry of metal–organic frameworks.Chem Soc Rev2009;38:1213-4

[24]

Zhou HC,Yaghi OM.Introduction to metal–organic frameworks.Chem Rev2012;112:673-4

[25]

Zheng F,Ding Z.Interlayer symmetry control in flexible-robust layered metal–organic frameworks for highly efficient C2H2/CO2 separation.J Am Chem Soc2023;145:19903-11

[26]

Gulati S,Mansi .Recent advances in the application of metal–organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals.Coord Chem Rev2023;474:214853

[27]

Li L,Lee JW.Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms.Renew Sust Energy Rev2022;162:112441

[28]

Yang S.Reverse-selective metal–organic framework materials for the efficient separation and purification of light hydrocarbons.Coord Chem Rev2022;468:214628

[29]

Xie Y,Cedeño Morales EM.Optimal binding affinity for sieving separation of propylene from propane in an oxyfluoride anion-based metal–organic framework.J Am Chem Soc2023;145:2386-94

[30]

Deneff JI,Butler KS.Orthogonal luminescence lifetime encoding by intermetallic energy transfer in heterometallic rare-earth MOFs.Nat Commun2023;14:981 PMCID:PMC9947006

[31]

Liu Q,Li M,Li L.Heterostructures made of upconversion nanoparticles and metal–organic frameworks for biomedical applications.Adv Sci2022;9:e2103911 PMCID:PMC8787403

[32]

Hashjin M, Zarshad S, Motejadded Emrooz HB, Sadeghzadeh S. Enhanced atmospheric water harvesting efficiency through green-synthesized MOF-801: a comparative study with solvothermal synthesis.Sci Rep2023;13:16983 PMCID:PMC10562380

[33]

Shi L,Wang D,Zhang S.Environmental pollution analysis based on the luminescent metal organic frameworks: a review.TrAC Trend Anal Chem2021;134:116131

[34]

Lin JY.CHEMISTRY. Molecular sieves for gas separation.Science2016;353:121-2

[35]

Datta SJ,Murthy Srivatsa Bettahalli N.Rational design of mixed-matrix metal–organic framework membranes for molecular separations.Science2022;376:1080-7

[36]

Wang G,Li Y.Rational construction of ultrahigh thermal stable MOF for efficient separation of MTO products and natural gas.ACS Mater Lett2023;5:1091-9

[37]

Dong Q,Hyeon-deuk K.Shape- and size-dependent kinetic ethylene sieving from a ternary mixture by a trap-and-flow channel crystal.Adv Funct Mater2022;32:2203745

[38]

Yaghi OM.Reticular chemistry-construction, properties, and precision reactions of frameworks.J Am Chem Soc2016;138:15507-9

[39]

Ke T,Shen J.Molecular sieving of C2-C3 alkene from alkyne with tuned threshold pressure in robust layered metal–organic frameworks.Angew Chem Int Ed Engl2020;59:12725-30

[40]

Eddaoudi M,Rosi N.Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage.Science2002;295:469-72

[41]

Pei J,Shao K.Engineering microporous ethane-trapping metal–organic frameworks for boosting ethane/ethylene separation.J Mater Chem A2020;8:3613-20

[42]

Meng SS,Guan H.Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology.Nat Commun2023;14:5347 PMCID:PMC10475113

[43]

Lyu H,Hanikel N.Carbon dioxide capture chemistry of amino acid functionalized metal–organic frameworks in humid flue gas.J Am Chem Soc2022;144:2387-96

[44]

Zulys A,Muhadzib N.Biological metal–organic frameworks (Bio-MOFs) for CO2 capture.Ind Eng Chem Res2021;60:37-51

[45]

Binaeian E,Ahmadi S.The green synthesis and applications of biological metal–organic frameworks for targeted drug delivery and tumor treatments.J Mater Chem B2023;11:11426-59

[46]

Si Y,Zhang P.CD-MOFs: from preparation to drug delivery and therapeutic application.Carbohydr Polym2024;323:121424

[47]

Wang L,Ye Q,Wang G.Nanoporous Cu(II)-adenine-based metal–organic frameworks for selective adsorption of C2H2 from C2H4 and CO2.ACS Appl Nano Mater2023;6:22095-103

[48]

Li T,Sullivan JE,Johnson JK.Systematic modulation and enhancement of CO2:N2 selectivity and water stability in an isoreticular series of bio-MOF-11 analogues.Chem Sci2013;4:1746-55

[49]

Pérez-Yáñez S,Castillo O.Open-framework copper adeninate compounds with three-dimensional microchannels tailored by aliphatic monocarboxylic acids.Inorg Chem2011;50:5330-2

[50]

Pérez-yáñez S,Castillo O.Gas adsorption properties and selectivity in CuII/adeninato/carboxylato metal–biomolecule frameworks.Eur J Inorg Chem2012;2012:5921-33

[51]

Li H,Zhang X.A microporous metal–organic framework with basic sites for efficient C2H2/CO2 separation.J Solid State Chem2020;284:121209

[52]

Song C,Liu Y.Spatial distribution of nitrogen binding sites in metal–organic frameworks for selective ethane adsorption and one-step ethylene purification.Angew Chem Int Ed Engl2023;62:e202313855

[53]

Chen OIF,Wang K.Water-enhanced direct air capture of carbon dioxide in metal–organic frameworks.J Am Chem Soc2024;146:2835-44

[54]

Liu X,Chen Z.Small molecules, big effects: tuning adsorption and catalytic properties of metal–organic frameworks.Chem Mater2021;33:1444-54

[55]

Xie Y,Cui H,Chen B.Efficient separation of propylene from propane in an ultramicroporous cyanide-based compound with open metal sites.Small Struct2022;3:2100125

[56]

Yang SQ,Krishna R.Propane-trapping ultramicroporous metal–organic framework in the low-pressure area toward the purification of propylene.ACS Appl Mater Interfaces2021;13:35990-6

[57]

Peng Y,Jin C.A robust heterometallic ultramicroporous MOF with ultrahigh selectivity for propyne/propylene separation.J Mater Chem A2021;9:2850-6

[58]

Gao J,Qian X.A microporous hydrogen-bonded organic framework for the efficient capture and purification of propylene.Angew Chem Int Ed Engl2021;60:20400-6

[59]

Zhou J,Steinke F.Tunable confined aliphatic pore environment in robust metal–organic frameworks for efficient separation of gases with a similar structure.J Am Chem Soc2022;144:14322-9

[60]

Shi R,Chen Y.Highly selective adsorption separation of light hydrocarbons with a porphyrinic zirconium metal–organic framework PCN-224.Sep Purif Technol2018;207:262-8

[61]

Huang Y,Fu H.Porous anionic indium-organic framework with enhanced gas and vapor adsorption and separation ability.ChemSusChem2014;7:2647-53

[62]

Zhang Y,Wang L,Xing H.A microporous metal–organic framework supramolecularly assembled from a CuII dodecaborate cluster complex for selective gas separation.Angew Chem Int Ed Engl2019;58:8145-50

[63]

Zhang Y,Wang L,Xing H.Pillar iodination in functional boron cage hybrid supramolecular frameworks for high performance separation of light hydrocarbons.J Mater Chem A2019;7:27560-6

[64]

Li YZ,Krishna R.A separation MOF with O/N active sites in nonpolar pore for one-step C2H4 purification from C2H6 or C3H6 mixtures.Chem Eng J2023;466:143056

[65]

Xiao Y,Chen Y.Developing water-stable pore-partitioned metal–organic frameworks with multi-level symmetry for high-performance sorption applications.Small2023;19:2205119

[66]

Liu X,Li J.An anionic metal–organic framework: metathesis of zinc(II) with copper(II) for efficient C3/C2 hydrocarbon and organic dye separation.Inorg Chem Front2018;5:2898-905

[67]

Zhang L,Wang G,Zhu Z.A new honeycomb MOF for C2H4 purification and C3H6 enrichment by separating methanol to olefin products.J Mater Chem A2023;11:2343-8

AI Summary AI Mindmap
PDF

54

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/