A novel structure Ti/Fe2O3/Cu2S/Co(OH)x enhances the photoelectrochemical water splitting performance of iron oxide

Hao-Yan Shi , Yan-Xin Chen , Ming-Hao Ji , Qian-Qian Zhou , Ke-Xian Li , Hai-Long Wang , Rui Chen , Xiu-Mei Lin , Can-Zhong Lu

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (3) : 45

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (3) :45 DOI: 10.20517/cs.2023.68
review-article

A novel structure Ti/Fe2O3/Cu2S/Co(OH)x enhances the photoelectrochemical water splitting performance of iron oxide

Author information +
History +
PDF

Abstract

The slow oxygen evolution kinetics of iron oxide nanorod arrays have limited their applications in photocatalytic water splitting. Herein, we introduce p-type semiconductor cuprous oxide and further cover cobalt hydroxide ultrathin nanosheets on the surface of both by electrochemical deposition; these methods obviously enhanced the photoelectrochemical (PEC) water splitting performance of iron oxide nanorods on titanium sheet substrate. The photocurrent of this heterostructure reached 4.8 mA/cm2 at 1.23 V (vs. reversible hydrogen electrode) in a 1 M KOH aqueous solution under AM 1.5G illumination, which is much higher than the currently reported photocatalytic water splitting performance of iron oxide nanoarrays. The construction of Fe2O3/Cu2S p-n heterojunction accelerates the separation of photogenerated carriers in the main body of Fe2O3 nanorod arrays; as an excellent oxygen evolution catalyst (OEC), the introduction of Co(OH)x accelerates the kinetic process of interfacial water oxidation leading to the rapid depletion of photogenerated holes, which further improves the charge separation on the photoanode surface. Thus, the synergistic effect between Fe2O3/Cu2S p-n heterojunctions and oxygen evolution catalysts enhanced the iron oxide nanorod array photoanodes.

Keywords

Ti/Fe2O3/Cu2S/Co(OH)x / photoelectrochemical / water splitting / hydrogen evolution

Cite this article

Download citation ▾
Hao-Yan Shi, Yan-Xin Chen, Ming-Hao Ji, Qian-Qian Zhou, Ke-Xian Li, Hai-Long Wang, Rui Chen, Xiu-Mei Lin, Can-Zhong Lu. A novel structure Ti/Fe2O3/Cu2S/Co(OH)x enhances the photoelectrochemical water splitting performance of iron oxide. Chemical Synthesis, 2024, 4(3): 45 DOI:10.20517/cs.2023.68

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bie C,Yu J.Challenges for photocatalytic overall water splitting.Chem2022;8:1567-74

[2]

Wang Z,Zheng L.Machine learning guided dopant selection for metal oxide-based photoelectrochemical water splitting: the case study of Fe2O3 and CuO.Adv Mater2022;34:e2106776

[3]

Liu B,Zhang G.Tandem cells for unbiased photoelectrochemical water splitting.Chem Soc Rev2023;52:4644-71

[4]

Li Y,Qiao W.Nanostructured heterogeneous photocatalyst materials for green synthesis of valuable chemicals.Chem Synth2022;2:9

[5]

Fujishima A.Electrochemical photolysis of water at a semiconductor electrode.Nature1972;238:37-8

[6]

Nayak AK,Pradhan D.Facile green synthesis of WO3·H2O nanoplates and WO3 nanowires with enhanced photoelectrochemical performance.Cryst Growth Des2017;17:4949-57

[7]

Zhao HP,Shi HY.Cerium-doped iron oxide nanorod arrays for photoelectrochemical water splitting.Molecules2022;27:9050 PMCID:PMC9780861

[8]

Li C,Wang T.Surface, bulk, and interface: rational design of hematite architecture toward efficient photo-electrochemical water splitting.Adv Mater2018;30:e1707502

[9]

Tang P.Engineering surface states of hematite based photoanodes for boosting photoelectrochemical water splitting.Nanoscale Horiz2019;4:1256-76

[10]

Gao L,Niu H,Ma J.Roles of cobalt-coordinated polymeric perylene diimide in hematite photoanodes for improved water oxidation.Small2023;19:e2302665

[11]

Wu J,Lin J,Huang M.Fabrication and photocatalytic properties of HLaNb2O7/(Pt, Fe2O3) pillared nanomaterial.J Phys Chem C2007;111:3624-8

[12]

Wang H,Song G.Intrinsic and extrinsic doping to construct hematite nanorod p-n homojunctions for highly efficient PEC water splitting.Chem Eng J2022;435:135016

[13]

Fujimoto H,Tobisu M.Synthesis of γ-lactams from acrylamides by single-carbon atom doping annulation.J Am Chem Soc2023;145:19518-22

[14]

Li F,Liao Y,Lv K.Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction.Nat Commun2023;14:3901 PMCID:PMC10317968

[15]

Zhang M,Bao X.Coupling benzylamine oxidation with CO2 photoconversion to ethanol over a black phosphorus and bismuth tungstate S-scheme heterojunction.Angew Chem Int Ed Engl2023;62:e202302919

[16]

Shen H,Xia Y.Straightforward and ultrastable surface modification of microfluidic chips with norepinephrine bitartrate improves performance in immunoassays.Anal Chem2018;90:3697-702

[17]

Li Z.Tetrafunctional Cu2S thin layers on Cu2O nanowires for efficient photoelectrochemical water splitting.Nano Res2018;11:1530-40

[18]

Guo K,Zhou C.Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance.Appl Catal B Environ2014;154-5:27-35

[19]

He B,Liu X.Spatial engineering of a Co(OH)x encapsulated p-Cu2S/n-BiVO4 photoanode: simultaneously promoting charge separation and surface reaction kinetics in solar water splitting.J Mater Chem A2019;7:6747-52

[20]

Zhang Y,Zhu SS.Covalent S–O bonding enables enhanced photoelectrochemical performance of Cu2S/Fe2O3 heterojunction for water splitting.Small2021;17:e2100320

[21]

Wu Y,Lv G.Construction of p-n junctions in single-unit-cell ZnIn2S4 nanosheet arrays toward promoted photoelectrochemical performance.J Catal2021;401:262-70

[22]

Li Z,Wang W.Near zero-threshold voltage P-N junction diodes based on super-semiconducting nanostructured Ag/Al arrays.Adv Mater2023;35:e2210612

[23]

Zhao Y,Santbergen R,Gardeniers H.From geometry to activity: a quantitative analysis of WO3/Si micropillar arrays for photoelectrochemical water splitting.Adv Funct Mater2020;30:1909157

[24]

Meng L,Wang S.A plasma-triggered O-S bond and P-N junction near the surface of a SnS2 nanosheet array to enable efficient solar water oxidation.Angew Chem Int Ed Engl2019;58:16668-75

[25]

Wu Y,Zhang H.Atomic sandwiched p-n homojunctions.Angew Chem Int Ed Engl2021;60:3487-92

[26]

Mcdonald KJ.Photodeposition of Co-based oxygen evolution catalysts on α-Fe2O3 photoanodes.Chem Mater2011;23:1686-93

[27]

Yang G,Pang H,Ye J.Ultrathin cobalt–manganese nanosheets: an efficient platform for enhanced photoelectrochemical water oxidation with electron-donating effect.Adv Funct Mater2019;29:1904622

[28]

Yang Z,Zhang W.Solid-state, low-cost, and green synthesis and robust photochemical hydrogen evolution performance of ternary TiO2/MgTiO3/C photocatalysts.iScience2019;14:15-26 PMCID:PMC6439234

[29]

An Y,Dong C.Scalable photoelectrochemical cell for overall solar water splitting into H2 and H2O2.ACS Energy Lett2024;9:1415-22

[30]

Cao Q,Chen N.Scalable synthesis of Cu2S double-superlattice nanoparticle systems with enhanced UV/visible-light-driven photocatalytic activity.Appl Catal B Environ2015;162:187-95

[31]

Li J,Yuan H,Jiao Z.Modification of BiVO4 with partially covered α-Fe2O3 spindles serving as hole-transport channels for significantly improved photoelectrochemical performance.Chem Eng J2020;398:125662

[32]

Yi S,Yan J.Highly efficient photoelectrochemical water splitting: surface modification of cobalt-phosphate-loaded Co3O4/Fe2O3 p–n heterojunction nanorod arrays.Adv Funct Mater2019;29:1801902

[33]

Gota S,Henriot M.Atomic-oxygen-assisted MBE growth of α-Fe2O3 on α-Al2O3 (0001): metastable FeO(111)-like phase at subnanometer thicknesses.Phys Rev B1999;60:14387-95

[34]

Liu P.Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde.J Am Chem Soc2013;135:14032-5

[35]

Wang G,Wheeler DA.Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation.Nano Lett2011;11:3503-9

[36]

Abraham KM.The lithium surface film in the Li/SO2 cell.J Electrochem Soc1986;133:1307-11

[37]

Benoist L,Pfister-Guillouzo GP,Meunier G.XPS analysis of oxido-reduction mechanisms during lithium intercalation in amorphous molybdenum oxysulfide thin films.Solid State Ionics1995;76:81-9

[38]

Liang Y,Zhou J.Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts.J Am Chem Soc2012;134:3517-23

[39]

Xu Y,Chen H,Su C.Toward high performance photoelectrochemical water oxidation: combined effects of ultrafine cobalt iron oxide nanoparticle.Adv Funct Mater2016;26:4414-21

[40]

Nie R,Du W,Hou Z.A sandwich N-doped graphene/Co3O4 hybrid: an efficient catalyst for selective oxidation of olefins and alcohols.J Mater Chem A2013;1:9037-45

[41]

Kim H,Park I.Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst.Nat Commun2015;6:8253 PMCID:PMC4579784

[42]

He B,Zhao M.General and robust photothermal-heating-enabled high-efficiency photoelectrochemical water splitting.Adv Mater2021;33:e2004406

[43]

Zhang Y,Gong X.Construction of piezoelectric photocatalyst Au/BiVO4 for efficient degradation of tetracycline and studied at single-particle level.Chem Synth2024;4:21

[44]

Tong M,Lin S.Ultra-thin carbon doped TiO2 nanotube arrays for enhanced visible-light photoelectrochemical water splitting.Appl Surf Sci2023;623:156980

[45]

Tong MH,Wang TM.Cerium synchronous doping in anatase for enhanced photocatalytic hydrogen production from ethanol-water mixtures.Molecules2023;28:2433 PMCID:PMC10057969

[46]

Jiang X,Liu H,Lu C.Lotus pollen-templated synthesis of C, N, P-self doped KTi2(PO4)3/TiO2 for sodium ion battery.Colloid Surface A2022;650:129605

[47]

Zhou Q,Shi H.The construction of p/n-Cu2O heterojunction catalysts for efficient CO2 photoelectric reduction.Catalysts2023;13:857

[48]

Tong M,Lin S.Synchronous electrochemical anodization: a novel strategy for preparing cerium doped TiO2 nanotube arrays toward visible-light PEC water splitting.Electrochim Acta2023;463:142793

[49]

Zhang Y,Liu B.Engineering BiVO4 and oxygen evolution cocatalyst interfaces with rapid hole extraction for photoelectrochemical water splitting.ACS Catal2023;13:5938-48

[50]

Xiao J,Huang Z.Functional principle of the synergistic effect of co-loaded Co-Pi and FeOOH on Fe2O3 photoanodes for photoelectrochemical water oxidation.Chinese J Catal2020;41:1761-71

[51]

Hu Z,Han C.Plasmon-induced hole-depletion layer on p-n heterojunction for highly efficient photoelectrochemical water splitting.J Colloid Interface Sci2022;628:946-54

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/