Dynamic evolution of HZSM-5 zeolite framework under steam treatment

Lin-Hai He , Jun-Jie Li , Song-Yue Han , Dong Fan , Xiu-Jie Li , Shu-Tao Xu , Ying-Xu Wei , Zhong-Min Liu

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (1) : 1

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (1) :1 DOI: 10.20517/cs.2023.55
review-article

Dynamic evolution of HZSM-5 zeolite framework under steam treatment

Author information +
History +
PDF

Abstract

Understanding the dynamic evolution of zeolite framework structures and the interactions between various hydroxyl groups or aluminum species under different steam conditions at the atomic scale is extremely crucial. Herein, using a series of characterization methods, the framework structures of HZSM-5 zeolites (Si/Al = 36) following exposure to steam in the temperature range of 100 to 500 °C are investigated. Under mild steam conditions (T ≤ 200 °C), dealumination is nearly absent, and the silanol nests directly condense to create new framework Si-O-Si bonds. Conversely, under severe steam conditions (T ≥ 300 °C), the framework tetrahedral aluminum atoms Al(IV)-1 can be sequentially converted to partially coordinated framework aluminum Al(IV)-2 and extra-framework aluminum (EFAL) through partial and complete hydrolysis, which cause an increase in the framework Si/Al ratio and a decrease in crystallinity. Al(IV)-2 is recognized as a significant intermediate species for framework complete dealumination. The Brønsted acid sites on Al(IV)-2 can be perturbed by the framework Al-OH groups due to hydrogen bonding interactions, leading to a shift in 1H chemical shifts to lower fields, appearing at 6.0-9.0 ppm and 12.0-15.0 ppm. The newly generated EFAL and silanol nests further evolve through condensation as well. Meanwhile, during dealumination, the spatial correlations (or interactions) of various hydroxyl groups on structurally distinct aluminum species [Al(IV)-1, Al(IV)-2, and EFAL] and aluminum species become extremely intricate. Based on these findings, the dynamic evolution path of HZSM-5 zeolite framework structures under mild and severe steam conditions is proposed.

Keywords

Solid-state NMR / ZSM-5 / steam / dealumination / dynamic evolution

Cite this article

Download citation ▾
Lin-Hai He, Jun-Jie Li, Song-Yue Han, Dong Fan, Xiu-Jie Li, Shu-Tao Xu, Ying-Xu Wei, Zhong-Min Liu. Dynamic evolution of HZSM-5 zeolite framework under steam treatment. Chemical Synthesis, 2024, 4(1): 1 DOI:10.20517/cs.2023.55

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Corma A.From microporous to mesoporous molecular sieve materials and their use in catalysis.Chem Rev1997;97:2373-420

[2]

Davis ME.Ordered porous materials for emerging applications.Nature2002;417:813-21

[3]

Dusselier M.Small-pore zeolites: synthesis and catalysis.Chem Rev2018;118:5265-329

[4]

Chen LH,Wang Z,Xie Z.Hierarchically structured zeolites: from design to application.Chem Rev2020;120:11194-294.

[5]

Vogt ET.Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis.Chem Soc Rev2015;44:7342-70.

[6]

Galadima A.Hydrocracking catalysts based on hierarchical zeolites: a recent progress.J Ind Eng Chem2018;61:265-80.

[7]

Tabak SA,Garwood WE.Conversion of propylene and butylene over ZSM-5 catalyst.AlChE J1986;32:1526-31.

[8]

Ogunbadejo B,Čejka J,Al-Khattaf S.The effect of alkylation route on ethyltoluene production over different structural types of zeolites.Chem Eng J2016;306:1071-80.

[9]

Ono Y.Transformation of lower alkanes into aromatic hydrocarbons over ZSM-5 zeolites.Catal Rev2006;34:179-226.

[10]

Tian P,Ye M.Methanol to olefins (MTO): from fundamentals to commercialization.ACS Catal2015;5:1922-38.

[11]

Yang M,Wei Y,Liu Z.Recent progress in methanol-to-olefins (MTO) catalysts.Adv Mater2019;31:e1902181.

[12]

Liu Z.Fundamentals of the catalytic conversion of methanol to hydrocarbons.Chem Synth2022;2:21

[13]

Heard CJ,Uhlik F.Zeolite (In)stability under aqueous or steaming conditions.Adv Mater2020;32:e2003264.

[14]

Simancas R,Elangovan SP.Recent progress in the improvement of hydrothermal stability of zeolites.Chem Sci2021;12:7677-95.

[15]

Hu Z-P,Wei Y.Dynamic evolution of zeolite framework and metal-zeolite interface.ACS Catal2022;12:5060-76.

[16]

Resasco DE,Wang B.Interaction of water with zeolites: a review.Catal Rev2021;63:302-62

[17]

Stanciakova K.Water-active site interactions in zeolites and their relevance in catalysis.Trends Chem2021;3:456-68.

[18]

Smith L,Morris RE.On the nature of water bound to a solid acid catalyst.Science1996;271:799-802.

[19]

Hunger B,Matysik S, Einicke WD.Adsorption of water on ZSM-5 zeolites.Thermochim Acta1995;269-70:599-611.

[20]

Randrianandraina J,Cardey B.Adsorption of water in Na-LTA zeolites: an ab initio molecular dynamics investigation.Phys Chem Chem Phys2021;23:19032-42.

[21]

Heard CJ,Rice CM.Fast room temperature lability of aluminosilicate zeolites.Nat Commun2019;10:4690

[22]

Pugh SM,Law DJ,Ashbrook SE.Facile, room-temperature (17)O enrichment of zeolite frameworks revealed by solid-state NMR spectroscopy.J Am Chem Soc2020;142:900-06.

[23]

Sun TT,Xiao D.Water-induced structural dynamic process in molecular sieves under mild hydrothermal conditions: ship-in-a-bottle strategy for acidity identification and catalyst modification.Angew Chem Int Ed2020;59:20672-81

[24]

Nielsen M,Falsig H,Swang O.Kinetics of zeolite dealumination: insights from H-SSZ-13.ACS Catal2015;5:7131-39.

[25]

Silaghi MC,Petracovschi E,Sauer J.Regioselectivity of Al-O bond hydrolysis during zeolites dealumination unified by brønsted–evans–polanyi relationship.ACS Catal2014;5:11-15.

[26]

Silaghi M-C,Sauer J.Dealumination mechanisms of zeolites and extra-framework aluminum confinement.J Catal2016;339:242-55.

[27]

Yu Z,Wang Q.Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field.Angew Chem Int Ed2010;49:8657-61.

[28]

Yu Z,Wang Q.Brønsted/lewis acid synergy in H-ZSM-5 and H-MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy.J Phys Chem C2011;115:22320-27.

[29]

Holzinger J,Lundegaard LF.Distribution of aluminum over the tetrahedral sites in ZSM-5 zeolites and their evolution after steam treatment.J Phys Chem C2018;122:15595-613.

[30]

Kalantzopoulos GN,Thorshaug K.Factors determining microporous material stability in water: the curious case of SAPO-37.Chem Mater2020;32:1495-505.

[31]

Zhang X,Chen F.Dealumination kinetics of composite ZSM-5/mordenite zeolite during steam treatment: an in-situ DRIFTS study.Chin J Chem Eng2018;26:545-50.

[32]

Agostini G,Palin L.In situ XAS and XRPD parametric rietveld refinement to understand dealumination of Y zeolite catalyst.J Am Chem Soc2010;132:667-78.

[33]

Malola S,Bleken FL.Detailed reaction paths for zeolite dealumination and desilication from density functional calculations.Angew Chem Int Ed Engl2012;51:652-5.

[34]

Stanciakova K,Göltl F,Weckhuysen BM.Cooperative role of water molecules during the initial stage of water-induced zeolite dealumination.ACS Catal2019;9:5119-35.

[35]

Fan B,Wang L,Wei Y.Dynamic evolution of Al species in the hydrothermal dealumination process of CHA zeolites.Inorg Chem Front2022;9:3609-18.

[36]

Bai X,Liu C,Wei Y.Solid-state NMR study on dealumination mechanism of H-MOR zeolite by high-temperature hydrothermal treatment.Micropor Mesopor Mat2023;354:112555

[37]

Ravi M,van Bokhoven JA.Towards a better understanding of Lewis acidic aluminium in zeolites.Nat Mater2020;19:1047-56.

[38]

Wang Z,Jiang Y,Huang J.Cooperativity of brønsted and lewis acid sites on zeolite for glycerol dehydration.ACS Catal2014;4:1144-7.

[39]

Zhao S,Kim KD.Synergy of extraframework Al3+ cations and brønsted acid sites on hierarchical ZSM-5 zeolites for butanol-to-olefin conversion.J Phys Chem C2021;125:11665-76

[40]

Li S,Su Y.Brønsted/lewis acid synergy in dealuminated HY zeolite:  a combined solid-state NMR and theoretical calculation Study.J Am Chem Soc2007;129:11161-71

[41]

Liu C,Hensen EJM.Nature and catalytic role of extraframework aluminum in faujasite zeolite: a theoretical perspective.ACS Catal2015;5:7024-33

[42]

Chen K,Nguyen VT.Structure and catalytic characterization of a second framework Al(IV) site in zeolite catalysts revealed by NMR at 35.2 T.J Am Chem Soc2020;142:7514-23.

[43]

Chen K,Horstmeier S.Distribution of aluminum species in zeolite catalysts: (27)Al NMR of framework, partially-coordinated framework, and non-framework moieties.J Am Chem Soc2021;143:6669-80

[44]

Chen K,Nguyen V.(17)O labeling reveals paired active sites in zeolite catalysts.J Am Chem Soc2022;144:16916-29.

[45]

Yi X,Deng F,Zheng A.Solid-state (31)P NMR mapping of active centers and relevant spatial correlations in solid acid catalysts.Nat Protoc2020;15:3527-55.

[46]

Jaegers NR,Wang Y.Variable temperature and pressure operando MAS NMR for catalysis science and related materials.Acc Chem Res2020;53:611-19

[47]

Wang W,Deng F.Recent advances in solid-state NMR of zeolite catalysts.Natl Sci Rev2022;9:nwac155

[48]

Hunger M.Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites.Solid State Nucl Magn Reson1996;6:1-29.

[49]

Fyfe CA,Klinowski J,Ramdas S.Resolving crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR.Nature1982;296:530-33.

[50]

Fyfe CA,Lam LY.Solid-State NMR detection, characterization, and quantification of the multiple aluminum environments in US-Y catalysts by 27Al MAS and MQMAS experiments at very high field.J Am Chem Soc2001;123:5285-91.

[51]

Zheng A,Deng F.Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules.Solid State Nucl Magn Reson2013;55-6:12-27.

[52]

Li J,Li S,Song C.Influence of diffusion and acid properties on methane and propane selectivity in methanol-to-olefins reaction.Ind Eng Chem Res2019;58:1896-905.

[53]

Kabalan I,Rigolet S.Influence of downsizing of zeolite crystals on the orthorhombic ↔ monoclinic phase transition in pure silica MFI-type.Solid State Sci2016;58:111-14.

[54]

van Koningsveld H. High-temperature (350 K) orthorhombic framework structure of zeolite H-ZSM-5.Acta Cryst1990;46:731-35.

[55]

van Koningsveld H, Jansen JC, van Bekkum H. The monoclinic framework structure of zeolite H-ZSM-5. Comparison with the orthorhombic framework of as-synthesized ZSM-5.Zeolites1990;10:235-42.

[56]

van Koningsveld H, Jansen JC, van Bekkum H. The orthorhombic/monoclinic transition in single crystals of zeolite ZSM-5.Zeolites1987;7:564-68.

[57]

Conner WC,Man P.Flexibility in zeolites:29Si NMR studies of ZSM-5 frame transitions.Catal Lett1990;4:75-83

[58]

Wu EL,Olson DH,Kokotailo GT.ZSM-5-type materials. Factors affecting crystal symmetry.J Phys Chem1979;83:2777-81.

[59]

Geurts FMM,Veeman WS.27Al nutation NMR of zeolites.Chem Phys Lett1985;120:206-10.

[60]

Hu JZ,Vjunov A.27Al MAS NMR studies of HBEA zeolite at low to high magnetic fields.J Phys Chem C2017;121:12849-54.

[61]

van Bokhoven JA, Koningsberger DC, Kunkeler P, van Bekkum H, Kentgens APM. Stepwise dealumination of zeolite beta at specific T-sites observed with 27Al MAS and 27Al MQ MAS NMR.J Am Chem Soc2000;122:12842-47.

[62]

Frydman L.Isotropic spectra of half-Integer quadrupolar spins from bidimensional magic-angle spinning NMR.J Am Chem Soc1995;117:5367-68.

[63]

Hu M,Chu Y.Unravelling the reactivity of framework lewis acid sites towards methanol activation on H-ZSM-5 zeolite with solid-state NMR spectroscopy.Angew Chem Int Ed Engl2022;61:e202207400.

[64]

Zeng S,Wang N.Investigation of ethanol conversion on H-ZSM-5 zeolite by in situ solid-state NMR.Energy Fuels2021;35:12319-28.

[65]

Sivadinarayana C,Guisnet M.Resolution enhancement in the 29Si MASS NMR spectra of high silica ZSM-5.J Catal1994;147:364-66.

[66]

Hunger M,Steuernagel S.High-field 1H MAS NMR investigations of acidic and non-acidic hydroxyl groups in zeolites H-Beta, H-ZSM-5, H-ZSM-58 and H-MCM-22.Microporous Mater1996;6:349-53.

[67]

Chen K,Sheets E,Ward G.Direct detection of multiple acidic proton sites in zeolite HZSM-5.J Am Chem Soc2017;139:18698-704.

[68]

Treps L,Wisser D.Spectroscopic expression of the external surface sites of H-ZSM-5.J Phys Chem C2021;125:2163-81

[69]

Dib E,Vayssilov GN,Mintova S.Complex H-bonded silanol network in zeolites revealed by IR and NMR spectroscopy combined with DFT calculations.J Mater Chem A2021;9:27347-52.

[70]

Schroeder C,Hunger M,Koller H.Disentangling brønsted acid sites and hydrogen-bonded silanol groups in high-silica zeolite H-ZSM-5.J Phys Chem C2020;124:23380-6

[71]

Vayssilov GN,Dib E,Nesterenko N.Superacidity and spectral signatures of hydroxyl groups in zeolites.Micropor Mesopor Mat2022;343:112144

[72]

Zhang WP,Liu XC,Bao XH.Perfluorotributylamine as a probe molecule for distinguishing internal and external acidic sites in zeolites by high-resolution H-1 MAS NMR spectroscopy.Chem Commun1999;12:1091-2

[73]

Schroeder C,Mück-Lichtenfeld C,Hansen MR.Hydrogen bond formation of brønsted acid sites in zeolites.Chem Mater2020;32:1564-74.

[74]

Huo H,Grey CP.Low Temperature 1H MAS NMR spectroscopy studies of proton motion in zeolite HZSM-5.J Phys Chem C2009;113:8211-9

[75]

Ong LH,Olindo R,Lercher JA.Dealumination of HZSM-5 via steam-treatment.Micropor Mesopor Mat2012;164:9-20.

[76]

Li J,Guo X.Influence of Al coordinates on hierarchical structure and T atoms redistribution during base leaching of ZSM-5.Ind Eng Chem Res2018;57:15375-84

[77]

Jiao J,Wang W,Hunger M.State of aluminum in dealuminated, nonhydrated zeolites Y investigated by multinuclear solid-state NMR spectroscopy.J Phys Chem B2004;108:14305-10.

[78]

Schallmoser S,Wagenhofer MF.Impact of the local environment of Brønsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking.J Catal2014;316:93-102

[79]

Zecchina A,Spoto G.Low-temperature Fourier-transform infrared investigation of the interaction of CO with nanosized ZSM5 and silicalite.J Chem Soc, Faraday Trans1992;88:2959-69.

[80]

Omegna A,Anton van Bokhoven J,Prins R.Dealumination and realumination of microcrystalline zeolite beta: an XRD, FTIR and quantitative multinuclear (MQ) MAS NMR study.Phys Chem Chem Phys2004;6:447-52.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/