Chiral cage materials with tailored functionalities for enantioselective recognition and separation

Tianyu Li , Yuan Pan , Luyao Ding , Yihong Kang , Xin-Qi Hao , Yujing Guo , Linlin Shi

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (2) : 35

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (2) :35 DOI: 10.20517/cs.2023.54
review-article

Chiral cage materials with tailored functionalities for enantioselective recognition and separation

Author information +
History +
PDF

Abstract

Chiral chemistry is often regarded as the science of studying the stereostructure and symmetry of organic molecules. It mainly focuses on the presence of chiral centers in specific structures and their impact on conformation, properties, and functions. In this field, researchers explore the special properties and potential applications of chiral compounds through synthesis, separation, and characterization. Here, we aim to provide a detailed overview of diverse functionalized cages based on chiral skeletons and their applications in enantioselective recognition and separation, and a diversity of chiral caged skeletons bearing customized functionalities conducted on the recognition and separation of chiral guests.

Keywords

Chiral cages / separation / self-assembly / synthesis / enantioselectivity

Cite this article

Download citation ▾
Tianyu Li, Yuan Pan, Luyao Ding, Yihong Kang, Xin-Qi Hao, Yujing Guo, Linlin Shi. Chiral cage materials with tailored functionalities for enantioselective recognition and separation. Chemical Synthesis, 2024, 4(2): 35 DOI:10.20517/cs.2023.54

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Y,Miao J.Chiral Transition Metal Oxides: Synthesis, Chiral Origins, and Perspectives.Adv Mater2020;32:e1905585

[2]

Simeonov SP,Guerra K,Afonso CA.Synthesis of chiral cyclopentenones.Chem Rev2016;116:5744-893

[3]

Xue YP,Zheng YG.Enzymatic asymmetric synthesis of chiral amino acids.Chem Soc Rev2018;47:1516-61

[4]

H RT.Salvarsan or 606 (dioxy-diamino-arsenobenzol): its chemistry, pharmacy, and therapeutics.Nature1911;86:412

[5]

Oliveira AL,da Silva SL,Ramos MJ.The chemistry of snake venom and its medicinal potential.Nat Rev Chem2022;6:451-69

[6]

Wang X.Indole alkaloid synthesis via radical cascade reactions.Chem2017;2:749-50

[7]

Rice CP,Bialek-Kalinski K,Torrents A.Corrigendum to “Analysis of metolachlor ethane sulfonic acid (MESA) chirality in groundwater: a tool for dating groundwater movement in agricultural settings” [Sci. Total Environ. 560-561 (2016) 36-43].Sci Total Environ2016;742:140736

[8]

Zhang H,Guenther K,Zuehlke S.Degradation of a chiral nonylphenol isomer in two agricultural soils.Environ Pollut2009;157:1904-10

[9]

Zhang Q,Tang B.Mechanistic insights into stereospecific bioactivity and dissipation of chiral fungicide triticonazole in agricultural management.J Agric Food Chem2018;66:7286-93

[10]

Barreiro JC,Cass QB.Challenges and innovations in chiral drugs in an environmental and bioanalysis perspective.TrAC Trends Anal Chem2021;142:116326

[11]

Fu Y,Marcé RM.Enantiomeric fraction determination of chiral drugs in environmental samples using chiral liquid chromatography and mass spectrometry.Trends Environ Anal Chem2021;29:e00115

[12]

Sanganyado E,Fu Q,Gan J.Chiral pharmaceuticals: a review on their environmental occurrence and fate processes.Water Res2017;124:527-42

[13]

Duan Y.Chiral mesostructured inorganic materials with optical chiral response.Adv Mater2023;35:e2205088

[14]

Gu ZG,Zhang J.Chiral chemistry of metal-camphorate frameworks.Chem Soc Rev2016;45:3122-44

[15]

Kuang H,Tang Z.Emerging chiral materials.Adv Mater2020;32:e2005110

[16]

Bentley R.Role of sulfur chirality in the chemical processes of biology.Chem Soc Rev2005;34:609-24

[17]

Hussain M,Wendel HP.Bioapplications of acoustic crystals, a review.TrAC Trends Anal Chem2018;102:194-209

[18]

Nau C.Drug chirality in anesthesia.Anesthesiology2002;97:497-502

[19]

Caban M.How to decrease pharmaceuticals in the environment? A review.Environ Chem Lett2021;19:3115-38

[20]

Kar S,Roy K,Leszczynski J.Green chemistry in the synthesis of pharmaceuticals.Chem Rev2022;122:3637-710

[21]

Kelly SA,Wharry S.Application of ω-transaminases in the pharmaceutical industry.Chem Rev2018;118:349-67

[22]

Pilz M,Qoura F,Brück T.Lipopeptides development in cosmetics and pharmaceutical applications: a comprehensive review.Biotechnol Adv2023;67:108210

[23]

Wang G,Dubbaka SR,Wu J.Multistep automated synthesis of pharmaceuticals.Trends Chem2023;5:432-45

[24]

Hu M,Yuan Y,Tang BZ.Chiral AIEgens - Chiral recognition, CPL materials and other chiral applications.Coord Chem Rev2020;416:213329

[25]

Pop F,Avarvari N.Main-group-based electro- and photoactive chiral materials.Chem Rev2019;119:8435-78

[26]

Xue M,Qiu S.Emerging functional chiral microporous materials: synthetic strategies and enantioselective separations.Mater Today2016;19:503-15

[27]

Zhang Q,Li A.Functional materials in chiral capillary electrophoresis.Coord Chem Rev2021;445:214108

[28]

Zhang Y,Han B.Circularly polarized luminescence in chiral materials.Matter2022;5:837-75

[29]

Tay HM,Thoonen S,Turner DR.Synthetic strategies towards chiral coordination polymers.Coord Chem Rev2021;435:213763

[30]

Zhang G,Wang Y.Supramolecular chiral polymeric aggregates: construction and applications.Aggregate2023;4:e262

[31]

Chen LJ,Shionoya M.Chiral metallosupramolecular architectures.Chem Soc Rev2017;46:2555-76

[32]

Feng HT,Xiong JB,Tang BZ.Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect.Chem Soc Rev2018;47:7452-76

[33]

Jędrzejewska H.Making a right or left choice: chiral self-sorting as a tool for the formation of discrete complex structures.Chem Rev2017;117:4863-99

[34]

Pan M,Zhang J.Chiral metal-organic cages/containers (MOCs): from structural and stereochemical design to applications.Coord Chem Rev2019;378:333-49

[35]

Van Der Voort P, Esquivel D, De Canck E, Goethals F, Van Driessche I, Romero-Salguero FJ. Periodic Mesoporous Organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications.Chem Soc Rev2013;42:3913-55

[36]

Zhang D,Zou YQ.Metal-organic cages for molecular separations.Nat Rev Chem2021;5:168-82

[37]

Borsley S,Oldknow S.Electrostatic forces in field-perturbed equilibria: nanopore analysis of cage complexes.Chem2019;5:1275-92

[38]

Cooper JA,Lusby PJ.Discrimination of supramolecular chirality using a protein nanopore.Chem Sci2017;8:5005-9 PMCID:PMC5612056

[39]

Kovalska VB,Kuperman MV.Induced chirality of cage metal complexes switched by their supramolecular and covalent binding.Dalton Trans2018;47:1036-52

[40]

Li B,Zhang W,Yang XJ.Site-selective binding of peripheral chiral guests induces stereospecificity in A4L6 tetrahedral anion cages.J Am Chem Soc2020;142:6304-11

[41]

Li Y,Gong W.Artificial biomolecular channels: enantioselective transmembrane transport of amino acids mediated by homochiral zirconium metal-organic cages.J Am Chem Soc2021;143:20939-51

[42]

Jiao J,Li Z,Han X.Design and assembly of chiral coordination cages for asymmetric sequential reactions.J Am Chem Soc2018;140:2251-9

[43]

Luo N,Wang DX.Exploiting anion-π interactions for efficient and selective catalysis with chiral molecular cages.Angew Chem Int Ed Engl2021;60:20650-5

[44]

Tan C,Tang X,Xuan W.Supramolecular coordination cages for asymmetric catalysis.Chemistry2019;25:662-72

[45]

Tan C,Li Z,Han X.Design and assembly of a chiral metallosalen-based octahedral coordination cage for supramolecular asymmetric catalysis.Angew Chem Int Ed Engl2018;57:2085-90

[46]

Wang Y,Shi P.Chaperone-like chiral cages for catalyzing enantio-selective supramolecular polymerization.Chem Sci2019;10:8076-82 PMCID:PMC6910136

[47]

Zhang D,Dutasta JP.Emergence of hemicryptophanes: from synthesis to applications for recognition, molecular machines, and supramolecular catalysis.Chem Rev2017;117:4900-42

[48]

Deng DR,Weng JC.Thin nano cages with limited hollow space for ultrahigh sulfur loading lithium-sulfur batteries.ACS Appl Mater Interfaces2022;14:45414-22

[49]

Li H,Zhang Y.An ultrathin functional layer based on porous organic cages for selective ion sieving and lithium-sulfur batteries.Nano Lett2022;22:2030-7

[50]

Li J,Jin F.Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor.Nat Commun2022;13:2031 PMCID:PMC9018795

[51]

Li X,Wang A,Liu X.Metal-organic cage as fluorescent probe for LiPF6 in lithium batteries.Green Energy Environ2023;In Press:

[52]

Peng L,Guo S.Correction: highly efficient construction of hollow Co-Nx nanocube cage dispersion implanted with porous carbonized nanofibers for Li-O2 batteries.J Mater Chem A2022;10:740-51

[53]

Zhang L,Meng F.A naphthalene organic cage captured sodium polysulphide as cathode materials for lithium-ion sulfide batteries.J Alloys Compd2022;923:166488

[54]

Zhang X,Mohamed AGA.Photo-assisted charge/discharge Li-organic battery with a charge-separated and redox-active C60@porous organic cage cathode.Energy Environ Sci2022;15:780-5

[55]

Li W,Gao T.Circularly polarized luminescent Eu4(LR)4 cage for enantiomeric excess and concentration simultaneous determination of chiral diamines.ACS Appl Mater Interfaces2022;14:55979-88

[56]

Sun YL,Ma H.Chiral emissive porous organic cages.Chem Commun2023;59:302-5

[57]

Tang X,Si Y.Endohedral functionalization of chiral metal-organic cages for encapsulating achiral dyes to induce circularly polarized luminescence.Chem2021;7:2771-86

[58]

Wu K,Baksi A.Guest-modulated circularly polarized luminescence by ligand-to-ligand chirality transfer in heteroleptic PdII coordination cages.Angew Chem Int Ed Engl2022;61:e202205725 PMCID:PMC9544203

[59]

Zheng A,Jin X,Duan P.Circularly polarized luminescent porous crystalline nanomaterials.Nanoscale2022;14:1123-35

[60]

Chen SQ,Li SN,Hu MC.Channel partition into nanoscale polyhedral cages of a triple-self-interpenetrated metal-organic framework with high CO2 uptake.Inorg Chem2015;54:10-2

[61]

Goronzy DP,Avery E.Influence of terminal carboxyl groups on the structure and reactivity of functionalized m-carboranethiolate self-assembled monolayers.Chem Mater2020;32:6800-9

[62]

Grunder S,Whalley AC.Molecular gauge blocks for building on the nanoscale.Chemistry2012;18:15632-49

[63]

Stang PJ,Muddiman DC.Transition-metal-mediated rational design and self-assembly of chiral, nanoscale supramolecular polyhedra with unique T symmetry.Organometallics1997;16:3094-6

[64]

Chaudhari AK.Mechanochromic MOF nanoplates: spatial molecular isolation of light-emitting guests in a sodalite framework structure.Nanoscale2018;10:3953-60

[65]

Bajpayee N,Rencus-Lazar S.Exploring helical peptides and foldamers for the design of metal helix frameworks: current trends and future perspectives.Angew Chem Int Ed Engl2023;62:e202214583

[66]

Han D.Chiral mass spectrometry: an overview.TrAC Trends Anal Chem2020;123:115763

[67]

Lipkowitz KB.Atomistic modeling of enantioselective binding.Acc Chem Res2000;33:555-62

[68]

Scriba GKE.Chiral recognition in separation sciences. Part II: Macrocyclic glycopeptide, donor-acceptor, ion-exchange, ligand-exchange and micellar selectors.TrAC Trends Anal Chem2019;119:115628

[69]

Wang S,Xiao Y.Recent advances in cyclodextrins-based chiral-recognizing platforms.TrAC Trends Anal Chem2019;121:115691

[70]

Zehnacker A.Chirality recognition between neutral molecules in the gas phase.Angew Chem Int Ed Engl2008;47:6970-92

[71]

Zor E,Ersoz M.Chiral sensors.TrAC Trends Anal Chem2019;121:115662

[72]

Zou J,Zhao G.Fast and sensitive recognition of enantiomers by electrochemical chiral analysis: recent advances and future perspectives.Coord Chem Rev2022;471:214732

[73]

Berijani K,Gu Z.Chiral templated synthesis of homochiral metal-organic frameworks.Coord Chem Rev2023;474:214852

[74]

Daintree LS,York P.Separation processes for organic molecules using SCF Technologies.Adv Drug Deliv Rev2008;60:351-72

[75]

Fan W,Han Y.Synthesis and chiral resolution of twisted carbon nanobelts.J Am Chem Soc2021;143:15924-9

[76]

Noorduin WL,Meekes H.Complete chiral resolution using additive-induced crystal size bifurcation during grinding.Angew Chem Int Ed Engl2009;48:3278-80

[77]

Xie R,Deng JG.Membranes and membrane processes for chiral resolution.Chem Soc Rev2008;37:1243-63

[78]

Zhou F,Charpentier MD.Simultaneous chiral resolution of two racemic compounds by preferential cocrystallization*.Angew Chem Int Ed Engl2021;60:20264-8

[79]

Beaulieu S,Descamps D.Photoexcitation circular dichroism in chiral molecules.Nature Phys2018;14:484-9

[80]

Kong XT,Wang Z.Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers.Nano Lett2018;18:2001-8

[81]

Quan M,Jiang W.Circular dichroism based chirality sensing with supramolecular host-guest chemistry.Angew Chem Int Ed Engl2022;61:e202201258

[82]

Zhang Y,Autschbach J,Mukamel S.X-ray circular dichroism signals: a unique probe of local molecular chirality.Chem Sci2017;8:5969-78 PMCID:PMC5620991

[83]

Guo JX,Yan XP.“Thiol-ene” click synthesis of chiral covalent organic frameworks for gas chromatography.J Mater Chem A2021;9:21151-7

[84]

Welch CJ.Are we approaching a speed limit for the chromatographic separation of enantiomers?.ACS Cent Sci2017;3:823-9 PMCID:PMC5571467

[85]

Yuan C,Yu Z.Are highly stable covalent organic frameworks the key to universal chiral stationary phases for liquid and gas chromatographic separations?.J Am Chem Soc2022;144:891-900

[86]

Zhou X,Wang H.Chiral resolution of DL-glutamic acid by a chiral additive.J Chem Tech Biotech2022;97:1240-6

[87]

Cheng Q,Pei H.Chiral membranes for enantiomer separation: a comprehensive review.Sep Purif Technol2022;292:121034

[88]

Wu Q,Zhao L.Applications of carbon nanomaterials in chiral separation.TrAC Trends Anal Chem2020;129:115941

[89]

Zhang QP,Zhang ZW.Triptycene-based chiral porous polyimides for enantioselective membrane separation.Angew Chem Int Ed Engl2021;60:12781-5

[90]

O'Neil LG.Electrophilic aminating agents in total synthesis.Angew Chem Int Ed Engl2021;60:25640-66 PMCID:PMC9291613

[91]

Wu Q,Gao J.Applications of hybrid organic-inorganic materials in chiral separation.TrAC Trends Anal Chem2017;95:140-8

[92]

Yasui M,Tsukano C.Total synthesis of avenaol.Nat Commun2017;8:674 PMCID:PMC5610312

[93]

Duan C,Wang B.Chiral photonic liquid crystal films derived from cellulose nanocrystals.Small2021;17:e2007306

[94]

Nayani K,Abbott NL.Colloids: chiral interactions in liquid crystals.Nat Mater2017;17:14-5

[95]

Yuan Y,Senyuk B,Smalyukh II.Chiral liquid crystal colloids.Nat Mater2018;17:71-9

[96]

Hou Y,Kuang X.Simultaneous electrochemical recognition of tryptophan and penicillamine enantiomers based on MOF-modified β-CD.Carbohydr Polym2022;290:119474

[97]

Zhang L,Xiong C.Chirality detection of amino acid enantiomers by organic electrochemical transistor.Biosens Bioelectron2018;105:121-8

[98]

Brunel JM.BINOL: a versatile chiral reagent.Chem Rev2005;105:857-97

[99]

Parmar D,Raja S.Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates.Chem Rev2014;114:9047-153

[100]

Ramakrishna E,Tao JJ.Self-assembly of chiral BINOL cages via imine condensation.Chem Commun2021;57:9088-91

[101]

Liu C,Qi D.Enantioselective assembly and recognition of heterochiral porous organic cages deduced from binary chiral components.Chem Sci2022;13:7014-20 PMCID:PMC9200113

[102]

Cui DX,Kou JN.Chiral self-sorting and guest recognition of porous aromatic cages.Nat Commun2022;13:4011 PMCID:PMC9273608

[103]

Gingras M.One hundred years of helicene chemistry. Part 1: non-stereoselective syntheses of carbohelicenes.Chem Soc Rev2013;42:968-1006

[104]

Shen Y.Helicenes: synthesis and applications.Chem Rev2012;112:1463-535

[105]

Malik AU,Shen C.Chiral organic cages with a triple-stranded helical structure derived from helicene.J Am Chem Soc2018;140:2769-72

[106]

Schulte TR,Clever GH.Chiral self-discrimination and guest recognition in helicene-based coordination cages.Angew Chem Int Ed Engl2019;58:5562-6 PMCID:PMC6563462

[107]

Lei Y,Liu P.Molecular cages self-assembled by imine condensation in water.Angew Chem Int Ed Engl2021;60:4705-11

[108]

Li G,Lavendomme R.Enantiopure FeII4L4 cages bind steroids stereoselectively.Chem2023;9:1549-61

[109]

Hou YJ,Wei ZW.Design and enantioresolution of homochiral Fe(II)-Pd(II) coordination cages from stereolabile metalloligands: stereochemical stability and enantioselective separation.J Am Chem Soc2018;140:18183-91

[110]

Zhu C,Yang K.Homochiral dodecanuclear lanthanide “cage in cage” for enantioselective separation.J Am Chem Soc2021;143:12560-6

[111]

Zhang D,Greenfield JL.Enantiopure [Cs+/Xe⊂cryptophane]⊂FeII4L4 hierarchical superstructures.J Am Chem Soc2019;141:8339-45

[112]

Xue W,Bellamkonda A.Subtle stereochemical effects influence binding and purification abilities of an FeII4L4 cage.J Am Chem Soc2023;145:5570-7 PMCID:PMC9999408

[113]

Hu SJ,Zhou LP.Guest-driven self-assembly and chiral induction of photofunctional lanthanide tetrahedral cages.J Am Chem Soc2022;144:4244-53

[114]

Wu G,Fang S.A self-assembled cage for wide-scope chiral recognition in water.Angew Chem Int Ed Engl2021;60:16594-9

[115]

Chen H,Zhang J.Surface chiroselective assembly of enantiopure crystalline porous films containing bichiral building blocks.Chem Sci2021;12:12346-52 PMCID:PMC8480342

[116]

Chen R,He Y.Coordination assembly of tetrahedral Ti4(embonate)6 cages with alkaline-earth metal ions.Chin J Struct Chem2022;41:2201001-6

[117]

Teng Q,Chen GH,He YP.Coordination assembly of tetrahedral Zr4(embonate)6 cages with Eu3+ ions.Inorg Chem2021;60:18178-84

[118]

He YP,Chen GH.Water-soluble and ultrastable Ti4L6 tetrahedron with coordination assembly function.J Am Chem Soc2017;139:16845-51

[119]

Chen GH,Yu Y.Post-assembly modification of homochiral titanium-organic cages for recognition and separation of molecular isomers.Angew Chem Int Ed Engl2023;62:e202300726

[120]

Buhse T,Noble-Terán ME.Spontaneous deracemizations.Chem Rev2021;121:2147-229

[121]

Hou X,Wang Y,Tong J.Superficial chiral etching on achiral metal-organic framework for enantioselective sorption.ACS Appl Mater Interfaces2017;9:32264-9

[122]

Soloshonok VA,Kitagawa O.Self-disproportionation of enantiomers via achiral chromatography: a warning and an extra dimension in optical purifications.Chem Soc Rev2012;41:4180-8

[123]

Katoono R,Fujiwara K.Enhanced circular dichroism at elevated temperatures through complexation-induced transformation of a three-layer cyclophane with dualistic dynamic helicity.Chem Sci2018;9:2222-9 PMCID:PMC5897879

[124]

Hu QP,Huang TY,Wang DX.Chirality gearing in an achiral cage through adaptive binding.J Am Chem Soc2022;144:6180-4

[125]

Cheng L,Duan Y.Adaptive chirality of an achiral cage: chirality transfer, induction, and circularly polarized luminescence through aqueous host-guest complexation.CCS Chem2021;3:2749-63

[126]

Cheng L,Duan H.Chiral adaptive recognition with sequence specificity of aromatic dipeptides in aqueous solution by an achiral cage.Chem Sci2023;14:833-42 PMCID:PMC9890615

AI Summary AI Mindmap
PDF

181

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/