Zwitterionic hydrogels and their biomedical applications: a review

Chengcheng Li , Hao Zheng , Xingguo Zhang , Zhihua Pu , Dachao Li

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (1) : 17

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (1) :17 DOI: 10.20517/cs.2023.50
review-article

Zwitterionic hydrogels and their biomedical applications: a review

Author information +
History +
PDF

Abstract

The coexistence of anions and cations in zwitterionic hydrogels results in electrostatic interactions between the polymer chains. This structure endows zwitterionic hydrogels with higher ion sensitivity and promising properties, such as anti-polyelectrolyte and thermosensitive effects. Hydrophilic groups on the molecular backbone give zwitterionic hydrogels good biocompatibility, and they effectively resist the non-specific adsorption of proteins. The abundant functional groups on the molecular skeleton also facilitate the chemical modification of zwitterionic hydrogels. In recent years, these excellent properties have made zwitterionic hydrogels broadly interesting and they have been heavily studied for medical applications. A comprehensive review will help researchers have a deeper understanding of zwitterionic hydrogels and their potential applications. In this review, the types, functional characteristics, and applications in the biomedicine of zwitterionic hydrogels are summarized in detail. In addition, the challenges and opportunities for using zwitterionic hydrogels for biomedical applications are discussed.

Keywords

Zwitterionic hydrogel / hydrophilicity / ion sensitivity / biocompatibility / biomedical applications

Cite this article

Download citation ▾
Chengcheng Li, Hao Zheng, Xingguo Zhang, Zhihua Pu, Dachao Li. Zwitterionic hydrogels and their biomedical applications: a review. Chemical Synthesis, 2024, 4(1): 17 DOI:10.20517/cs.2023.50

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu M,Wang X.Emerging design strategies toward developing next-generation implantable batteries and supercapacitors.Adv Funct Mater2023;33:2301877

[2]

Hu X,Li J.Superior water anchoring hydrogel validated by colorimetric sensing.Mater Horiz2020;7:3250-7

[3]

Gong JP.Materials both tough and soft.Science2014;344:161-2

[4]

Laschewsky A.Molecular design of zwitterionic polymer interfaces: searching for the difference.Langmuir2019;35:1056-71

[5]

Sakai-Kato K,Ishihara K.An enzyme-immobilization method for integration of biofunctions on a microchip using a water-soluble amphiphilic phospholipid polymer having a reacting group.Lab Chip2004;4:4-6

[6]

Morawetz H.Polyelectrolyte solutions: phenomena and interpretation.ACS Symposium Series2006;937:1-18

[7]

Donnio B,Harada A.Supramolecular polymers/polymeric betains/oligomers. Heidelberg: Springer Berlin; 2006.

[8]

Bonyadi SZ,Grunlan MA.Cartilage-like tribological performance of charged double network hydrogels.J Mech Behav Biomed Mater2021;114:104202

[9]

Sun Y,Li Q.High strength zwitterionic nano-micelle hydrogels with superior self-healing, adhesive and ion conductive properties.Eur Polym J2020;133:109761

[10]

Qi X,Li Y,Ma H.Nonfouling and antibacterial zwitterionic contact lenses loaded with heme-mimetic gallium porphyrin for treating keratitis.Langmuir2022;38:14335-44

[11]

Decarli NO,de Souza BS,Winiarski JP.Biosensor based on laccase-halloysite nanotube and imidazolium zwitterionic surfactant for dopamine determination.Biochem Eng J2022;186:108565

[12]

Ladd J,Chen S,Jiang S.Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma.Biomacromolecules2008;9:1357-61

[13]

Jain P,Li B.Zwitterionic hydrogels based on a degradable disulfide carboxybetaine cross-linker.Langmuir2019;35:1864-71 PMCID:PMC6520105

[14]

Zhang C,Han H,Xu W.Dopamine-triggered hydrogels with high transparency, self-adhesion, and thermoresponse as skinlike sensors.ACS Nano2021;15:1785-94

[15]

Wang J,Wu C.Antibacterial zwitterionic polyelectrolyte hydrogel adhesives with adhesion strength mediated by electrostatic mismatch.ACS Appl Mater Interfaces2020;12:46816-26

[16]

Zhu Y,Song J.A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment.Adv Funct Mater2020;30:1905493

[17]

Yu P,Sun H.Mimicking antioxidases and hyaluronan synthase: a zwitterionic nanozyme for photothermal therapy of osteoarthritis.Adv Mater2023;35:2303299

[18]

Yin H,Sun TL.Polyzwitterions as a versatile building block of tough hydrogels: from polyelectrolyte complex gels to double-network gels.ACS Appl Mater Interfaces2020;12:50068-76

[19]

Sällström N,Lewis MP,Martin S.3D-printable zwitterionic nano-composite hydrogel system for biomedical applications.J Tissue Eng2020;11:2041731420967294 PMCID:PMC7604982

[20]

Wen C,Li Y.A zwitterionic hydrogel coated titanium surface with high-efficiency endothelial cell selectivity for rapid re-endothelialization.Biomater Sci2020;8:5441-51

[21]

Zhao J,Wu M.Dual-cross-linked network hydrogels with multiresponsive, self-healing, and shear strengthening properties.Biomacromolecules2021;22:800-10

[22]

Shen W,Wan P.Antineoplastic drug-free anticancer strategy enabled by host-defense-peptides-mimicking synthetic polypeptides.Adv Mater2020;32:2001108

[23]

Men Y,Yang P.Biodegradable zwitterionic nanogels with long circulation for antitumor drug delivery.ACS Appl Mater Interfaces2018;10:23509-21

[24]

Pei X,Zhou Y,Fu J.Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions.Mater Horiz2020;7:1872-82

[25]

Yang B.Highly stretchable, adhesive, and mechanical zwitterionic nanocomposite hydrogel biomimetic skin.ACS Appl Mater Interfaces2019;11:40620-8

[26]

Wang S,He X.Anti-swelling zwitterionic hydrogels as multi-modal underwater sensors and all-in-one supercapacitors.ACS Appl Polym Mater2022;4:7498-507

[27]

Rong M,Scaraggi M.High lubricity meets load capacity: cartilage mimicking bilayer structure by brushing up stiff hydrogels from subsurface.Adv Funct Mater2020;30:2004062

[28]

Yang J,Lin J.Ball-bearing-inspired polyampholyte-modified microspheres as bio-lubricants attenuate osteoarthritis.Small2020;16:2006356

[29]

Katchalsky A.Polyampholytes.J Polym Sci1954;13:57-68

[30]

Yuan YY,Du XJ,Wang F.Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor.Adv Mater2012;24:5476-80

[31]

Zheng J,Yao Y,Wang L.Zwitterionic carbon nanotube assisted thin-film nanocomposite membranes with excellent efficiency for separation of mono/divalent ions from brackish water.J Mater Chem A2017;5:13730-9

[32]

Li G,Gao C,Jiang S.Nonfouling polyampholytes from an ion-pair comonomer with biomimetic adhesive groups.Macromolecules2010;43:14-6 PMCID:PMC2836832

[33]

Ehrmann M,Meurer B,Galin JC.Statistical n-butyl acrylate-(sulfopropyl)ammonium betaine copolymers. 2. Structural studies.Macromolecules1992;25:2253-61

[34]

Lowe AB,Armes SP.Synthesis and aqueous solution properties of novel zwitterionic block copolymers.Chem Commun1997;1035-6

[35]

Baker JP,Prausnitz JM.Swelling properties of acrylamide-based ampholytic hydrogels: comparison of experiment with theory.Polymer1995;36:1061-9

[36]

Shao Q.Molecular understanding and design of zwitterionic materials.Adv Mater2015;27:15-26

[37]

Chen Y,Tong H.Zwitterionic phosphorylcholine - TPE conjugate for pH-responsive drug delivery and AIE active imaging.ACS Appl Mater Interfaces2016;8:21185-92

[38]

Liu Z,Ren Y.Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper.Mater Horiz2020;7:919-27

[39]

Jiang S.Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications.Adv Mater2010;22:920-32

[40]

Zhang Z,Chen S.Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides.Langmuir2006;22:10072-7

[41]

Chang Y,Yu Q,Bernards M.Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance.Biomacromolecules2007;8:122-7

[42]

Chang Y,Shih YJ,Hsiue GH.Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization.ACS Appl Mater Interfaces2011;3:1228-37

[43]

Matsuno R.Integrated functional nanocolloids covered with artificial cell membranes for biomedical applications.Nano Today2011;6:61-74

[44]

Liu Q,Wang H,Cheng F.Amino acid-based zwitterionic polymer surfaces highly resist long-term bacterial adhesion.Langmuir2016;32:7866-74

[45]

Li D,Wu C.Superhydrophilicity and strong salt-affinity: zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems.Adv Colloid Interface Sci2020;278:102141

[46]

Deng P,Wang Y.Highly stretchable ionic and electronic conductive fabric.Adv Fiber Mater2023;5:198-208

[47]

Rose MA,Vorokhta M.Identifying ionic and electronic charge transfer at oxide heterointerfaces.Adv Mater2021;33:2004132

[48]

McDaniel JG.Influence of electronic polarization on the structure of ionic liquids.J Phys Chem Lett2018;9:4765-70

[49]

Jin Z,Huang H.Garnet-type solid-state mixed ionic and electronic conductor.Energy Storage Mater2023;59:102788

[50]

Cardoso J,Manero O.Ionic conductivity studies on salt-polyzwitterion systems.Macromolecules1991;24:2890-5

[51]

Yang J,Wang J.Antifreezing zwitterionic hydrogel electrolytes: antifreezing zwitterionic hydrogel electrolyte with high conductivity of 12.6 mS cm-1 at -40 °C through hydrated lithium ion hopping migration (Adv. Funct. Mater. 18/2021).Adv Funct Mater2021;31:2170121

[52]

Wang L,Zhou Y.Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors.ACS Appl Mater Interfaces2019;11:3506-15

[53]

Tiyapiboonchaiya C,Sun J.The zwitterion effect in high-conductivity polyelectrolyte materials.Nat Mater2004;3:29-32

[54]

Jin X,Qiao F.Fabrication of alginate-P (SBMA-co-AAm) hydrogels with ultrastretchability, strain sensitivity, self-adhesiveness, biocompatibility, and self-cleaning function for strain sensors.J Appl Polym Sci2021;138:49697

[55]

Gao G,Zhou F.Bioinspired self-healing human-machine interactive touch pad with pressure-sensitive adhesiveness on targeted substrates.Adv Mater2020;32:2004290

[56]

Cai N,Zhang J.Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent.J Colloid Interface Sci2017;503:168-77

[57]

Huang H,Crisci R.Strong surface hydration and salt resistant mechanism of a new nonfouling zwitterionic polymer based on protein stabilizer TMAO.J Am Chem Soc2021;143:16786-95

[58]

Carr L,Xue H.Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels.Langmuir2010;26:14793-8

[59]

Vaisocherová H,Yang W.Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma - material selection and protein immobilization optimization.Biosens Bioelectron2009;24:1924-30

[60]

Liu Y,Ren B.Molecular simulations and understanding of antifouling zwitterionic polymer brushes.J Mater Chem B2020;8:3814-28

[61]

Vales TP,Lee WY,Cho S.Protein adsorption and bacterial adhesion resistance of cross-linked copolymer hydrogels based on poly(2-methacryloyloxyethyl phosphorylcholine) and poly(2-hydroxyethyl methacrylate).Bulletin Korean Chem Soc2020;41:406-12

[62]

Ishihara K,Mihara T,Iwasaki Y.Why do phospholipid polymers reduce protein adsorption?.J Biomed Mater Res1998;39:323-30

[63]

Zhou L,Wang Q,Chen Y.Biocompatible polyphosphorylcholine hydrogels with inherent antibacterial and nonfouling behavior effectively promote skin wound healing.ACS Appl Bio Mater2020;3:5357-66

[64]

Zhou L,Wang Q,Luo X.Rational design of polyphosphorylcholine-based micelles for superior anti-biofilm activity.Macro Mater Eng2022;307:2100806

[65]

Fu F,Tan Y.Super-hydrophilic zwitterionic polymer surface modification facilitates liquid transportation of microfluidic sweat sensors.Macromol Rapid Commun2022;43:2100776

[66]

Yu X,Janzen J.Polyvalent choline phosphate as a universal biomembrane adhesive.Nat Mater2012;11:468-76

[67]

Hu G.Functional choline phosphate polymers.J Am Chem Soc2016;138:1828-31

[68]

Nyyssölä A. Pathways of glycine betaine synthesis in two extremely halophilic bacteria, actinopolyspora halophila and ectothiorhodospira halochloris. Available from: https://aaltodoc.aalto.fi/items/5b13c16e-8c5c-4589-a16b-2667cb8a7015. [Last accessed on 23 Feb 2024]

[69]

Vaisocherová H,Zhang Z.Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma.Anal Chem2008;80:7894-901

[70]

Mi L,Cheng G,Jiang S.pH responsive properties of non-fouling mixed-charge polymer brushes based on quaternary amine and carboxylic acid monomers.Biomaterials2010;31:2919-25

[71]

West SL,Lobb EJ.The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines.Biomaterials2004;25:1195-204

[72]

Fang K,Zhang H.Mechano-responsive, tough, and antibacterial zwitterionic hydrogels with controllable drug release for wound healing applications.ACS Appl Mater Interfaces2020;12:52307-18

[73]

Zhang Z,Cheng G,Xue H.Nonfouling behavior of polycarboxybetaine-grafted surfaces: structural and environmental effects.Biomacromolecules2008;9:2686-92

[74]

Zhu Y,Lowe AB.Design of thermoresponsive polymers with aqueous LCST, UCST, or both: modification of a reactive poly(2-vinyl-4,4-dimethylazlactone) scaffold.Macromolecules2016;49:672-80

[75]

Li Z,Tang Y.Effect of end-groups on sulfobetaine homopolymers with the tunable upper critical solution temperature (UCST).Eur Polym J2020;132:109704

[76]

Lewoczko EM,Lundberg CE.Effects of N-substituents on the solution behavior of poly(sulfobetaine methacrylate)s in water: upper and lower critical solution temperature transitions.ACS Appl Polym Mater2021;3:867-78

[77]

Hildebrand V,Wischerhoff E.Modulating the solubility of zwitterionic poly((3-methacrylamidopropyl)ammonioalkane sulfonate)s in water and aqueous salt solutions via the spacer group separating the cationic and the anionic moieties.Polym Chem2016;7:731-40

[78]

Saha P,Frenken M.Dual-temperature-responsive microgels from a zwitterionic functional graft copolymer with superior protein repelling property.ACS Macro Lett2020;9:895-901

[79]

Tamaki M.pH-switchable LCST/UCST-type thermosensitive behaviors of phenylalanine-modified zwitterionic dendrimers.RSC Adv2020;10:10452-60 PMCID:PMC9050367

[80]

Quan X,Li L.Understanding the cellular uptake of pH-responsive zwitterionic gold nanoparticles: a computer simulation study.Langmuir2017;33:14480-9

[81]

Zhou Y,Zhao D,He C.A pH-triggered self-unpacking capsule containing zwitterionic hydrogel-coated MOF nanoparticles for efficient oral exendin-4 delivery.Adv Mater2021;33:2102044

[82]

Zhang Y,Wang T,Tong Z.Polyampholyte hydrogels with pH modulated shape memory and spontaneous actuation.Adv Funct Mater2018;28:1707245

[83]

Wang T,Long Y,Zhang G.Ion-specific conformational behavior of polyzwitterionic brushes: exploiting it for protein adsorption/desorption control.Langmuir2013;29:6588-96

[84]

Mccormick CL.Water-soluble polymers. 28. Ampholytic copolymers of sodium 2-acrylamido-2-methylpropanesulfonate with (2-acrylamido-2-methylpropyl)dimethylammonium chloride: synthesis and characterization.Macromolecules1988;21:686-93

[85]

Han X,Shao Q,Chen Z.Absolute orientations of water molecules at zwitterionic polymer interfaces and interfacial dynamics after salt exposure.Langmuir2019;35:1327-34

[86]

Zheng SY,Si M.A molecularly engineered zwitterionic hydrogel with strengthened anti-polyelectrolyte effect: from high-rate solar desalination to efficient electricity generation.Adv Funct Mater2023;33:2303272

[87]

Li X,Sun TL.Effect of salt on dynamic mechanical behaviors of polyampholyte hydrogels.Macromolecules2023;56:535-44

[88]

Fang Y,Gong X.Salt sensitive purely zwitterionic physical hydrogel for prevention of postoperative tissue adhesion.Acta Biomater2023;158:239-51

[89]

Yu X,Xin Y.Temperature and salt responsive zwitterionic polysulfamide-based nanogels with surface regeneration ability and controlled drug release.Polym Chem2019;10:6423-31

[90]

Shao Q,Han X.Differences in cationic and anionic charge densities dictate zwitterionic associations and stimuli responses.J Phys Chem B2014;118:6956-62

[91]

Sabu C,Raphey VR,Pramod K.Advanced biosensors for glucose and insulin.Biosens Bioelectron2019;141:111201

[92]

Erathodiyil N,Wu H.Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices.Mater Today2020;38:84-98

[93]

Huang KT,Dai LG.Complete zwitterionic double network hydrogels with great toughness and resistance against foreign body reaction and thrombus.J Mater Chem B2020;8:7390-402

[94]

Rebelo R,Correlo VM.An outlook on implantable biosensors for personalized medicine.Engineering2021;7:1696-9

[95]

Dave KM,Jackson MA,Duvall CL.DNA polyplexes of a phosphorylcholine-based zwitterionic polymer for gene delivery.Pharm Res2020;37:176 PMCID:PMC9088815

[96]

Xu Z,Liu N,Luo X.Electrochemical biosensors for the detection of carcinoembryonic antigen with low fouling and high sensitivity based on copolymerized polydopamine and zwitterionic polymer.Sensor Actuat B Chem2020;319:128253

[97]

Lu S,Zhang Z.Zwitterionic polymers coating antibiofouling photoelectrochemical aptasensor for in vivo antibiotic metabolism monitoring and tracking.Anal Chem2022;94:14509-16

[98]

Keefe AJ.Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity.Nat Chem2011;4:59-63 PMCID:PMC4059762

[99]

Zhu Y,Zhang J.Encapsulation of laccase within zwitterionic poly-carboxybetaine hydrogels for improved activity and stability.Catal Sci Technol2018;8:5217-24

[100]

Erfani A,Seaberg J,Aichele CP.Zwitterionic poly(carboxybetaine) microgels for enzyme (chymotrypsin) covalent immobilization with extended stability and activity.J Appl Polym Sci2021;138:50545

[101]

Meyers SR.Biocompatible and bioactive surface modifications for prolonged in vivo efficacy.Chem Rev2012;112:1615-32 PMCID:PMC3878818

[102]

Hawkins ML,Grigoryan B.Anti-protein and anti-bacterial behavior of amphiphilic silicones.Polym Chem2017;8:5239-51 PMCID:PMC5667680

[103]

Sung HJ,Murthy NS.Poly(ethylene glycol) as a sensitive regulator of cell survival fate on polymeric biomaterials: the interplay of cell adhesion and pro-oxidant signaling mechanisms.Soft Matter2010;6:5196-205

[104]

Lee DU,Park J.Antibiofilm and antithrombotic hydrogel coating based on superhydrophilic zwitterionic carboxymethyl chitosan for blood-contacting devices.Bioact Mater2024;34:112-24 PMCID:PMC10777421

[105]

Yao M,Guo Z.A starch-based zwitterionic hydrogel coating for blood-contacting devices with durability and bio-functionality.Chem Eng J2021;421:129702

[106]

Du Q,Zeng X.Antifouling zwitterionic peptide hydrogel based electrochemical biosensor for reliable detection of prostate specific antigen in human serum.Anal Chim Acta2023;1239:340674

[107]

Wu H,Wang H.Highly sensitive and stable zwitterionic poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) glucose biosensor.Chem Sci2018;9:2540-6 PMCID:PMC5911821

[108]

Xie X,Yesilyurt V.Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer.Nat Biomed Eng2018;2:894-906 PMCID:PMC6436621

[109]

Li X,Liu D.High-strength and nonfouling zwitterionic triple-network hydrogel in saline environments.Adv Mater2021;33:2102479

[110]

Yao M,Li J.Microgel reinforced zwitterionic hydrogel coating for blood-contacting biomedical devices.Nat Commun2022;13:5339 PMCID:PMC9468150

[111]

Dong D,Hung HC.High-strength and fibrous capsule-resistant zwitterionic elastomers.Sci Adv2021;7:eabc5442 PMCID:PMC7775767

[112]

Zhang W,Sun S.Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network.Nat Commun2021;12:4082 PMCID:PMC8253733

[113]

Sun Y,Liu Y,Zhang S.Biomimetic chromotropic photonic-ionic skin with robust resilience, adhesion, and stability.Adv Funct Mater2022;32:2204467

[114]

Xu S,Guo H.Force-induced ion generation in zwitterionic hydrogels for a sensitive silent-speech sensor.Nat Commun2023;14:219 PMCID:PMC9839672

[115]

Xu T,Song B.High-strain sensitive zwitterionic hydrogels with swelling-resistant and controllable rehydration for sustainable wearable sensor.J Colloid Interface Sci2022;620:14-23

[116]

Zhang D,Zhang Y.Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain sensors.J Mater Chem A2020;8:20474-85

[117]

Huang Y,Zhou J.Strong tough polyampholyte hydrogels via the synergistic effect of ionic and metal-ligand bonds.Adv Funct Mater2021;31:2103917

[118]

Bai J,Wang X. Biomineral calcium-ion-mediated conductive hydrogels with high stretchability and self-adhesiveness for sensitive iontronic sensors. Cell Rep Phys Sci 2021;2:100623. Available from: https://www.sciencedirect.com/science/article/pii/S2666386421003416. [Last accessed on 23 Feb 2024]

[119]

Wang H,Ji Y.Highly transparent, mechanical, and self-adhesive zwitterionic conductive hydrogels with polyurethane as a cross-linker for wireless strain sensors.J Mater Chem B2022;10:2933-43

[120]

Huang H,Fu X.Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin.Adv Elect Mater2020;6:2000239

[121]

Guo H,Wen C.A zwitterionic-aromatic motif-based ionic skin for highly biocompatible and glucose-responsive sensor.J Colloid Interface Sci2021;600:561-71

[122]

Guo H,Zhu Y.Pro-healing zwitterionic skin sensor enables multi-indicator distinction and continuous real-time monitoring.Adv Funct Mater2021;31:2106406

[123]

Lee DU,Choi DY,Moon MJ.Basic amino acid-mediated cationic amphiphilic surfaces for antimicrobial pH monitoring sensor with wound healing effects.Biomater Res2023;27:14 PMCID:PMC9936651

[124]

Li C,Cheng X.Polymers for flexible energy storage devices.Prog Polym Sci2023;143:101714

[125]

Zhao F,Zhou X,Yu G.Nanostructured functional hydrogels as an emerging platform for advanced energy technologies.Adv Mater2018;30:1801796

[126]

Wang Z,Wang S.Self-powered energy harvesting and implantable storage system based on hydrogel-enabled all-solid-state supercapacitor and triboelectric nanogenerator.Chem Eng J2023;463:142427

[127]

Dutta B.Synthesis of copolymer nanocomposite by in situ intercalative polymerization for batch and fixed bed adsorption.Polym Eng Sci2023;63:2578-95

[128]

Qiu M,Tawiah B,Fu S.Zwitterionic triple-network hydrogel electrolyte for advanced flexible zinc ion batteries.Compos Commun2021;28:100942

[129]

Lee JH,Kim J.Accelerated Li-ion transport through a zwitterion-anchored separator for high-performance Li-S batteries.J Mater Chem A2021;9:25463-73

[130]

Lee JH,Kim J.Zwitterionic surfactant-stabilized ionogel electrolytes with high ionic conductivity for lithium secondary batteries.J Power Sources2023;557:232565

[131]

Leng K,Guo J.A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries.Adv Funct Mater2020;30:2001317

[132]

Khalil H, Bhat A, Ireana Yusra A. Green composites from sustainable cellulose nanofibrils: a review.Carbohyd Polym2012;87:963-79

[133]

Mo F,Liang G.Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities.Adv Energy Mater2020;10:2000035

[134]

Li C,Guo Y.Hydrogel electrolyte with high tolerance to a wide spectrum of pHs and compressive energy storage devices based on it.Small Methods2023;7:e2201448

[135]

Peng X,Yin Q.A zwitterionic gel electrolyte for efficient solid-state supercapacitors.Nat Commun2016;7:11782 PMCID:PMC4894970

[136]

Amiri A,Polycarpou AA.Configuration-dependent stretchable all-solid-state supercapacitors and hybrid supercapacitors.Carbon Energy2023;5:e320

[137]

Zhang Z,Gao Y,Gao G.A self-adhesive, self-healing zwitterionic hydrogel electrolyte for high-voltage zinc-ion hybrid supercapacitors.Chem Eng J2023;452:139014

[138]

Wei J,Su S,Feng J.Water-deactivated polyelectrolyte hydrogel electrolytes for flexible high-voltage supercapacitors.ChemSusChem2018;11:3410-5

[139]

Han L,Fu X.A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor.Chem Eng J2020;392:123733

[140]

Guo WY,Huang LZ.Multifunctional MXene conductive zwitterionic hydrogel for flexible wearable sensors and arrays.ACS Appl Mater Interfaces2023;15:24933-47

[141]

Chen Y,Yin R.Ultra-robust, high-adhesive, self-healing, and photothermal zwitterionic hydrogels for multi-sensory applications and solar-driven evaporation.Mater Horiz2023;10:3807-20

[142]

Tang L,Li Y.A super-tough ionic conductive hydrogel with anti-freezing, water retention, and self-regenerated properties for self-powered flexible sensor.Appl Mater Today2023;32:101820

[143]

Sui X,Cai C.Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities.Chem Eng J2021;419:129478

[144]

Jiao Q,Zhao Z,Li J.Zwitterionic hydrogel with high transparency, ultrastretchability, and remarkable freezing resistance for wearable strain sensors.Biomacromolecules2021;22:1220-30

[145]

Zhang Y,Miao L.A highly sensitive and ultra-stretchable zwitterionic liquid hydrogel-based sensor as anti-freezing ionic skin.J Mater Chem A2022;10:3970-88

[146]

Lan J,Yin C,Ni W.Zwitterionic dual-network strategy for highly stretchable and transparent ionic conductor.Polymer2021;231:124111

[147]

Cao L,Li J,Wei Y.Gelatin-reinforced zwitterionic organohydrogel with tough, self-adhesive, long-term moisturizing and antifreezing properties for wearable electronics.Biomacromolecules2022;23:1278-90

[148]

Hu R,Cui W.An ultrahighly stretchable and recyclable starch-based gel with multiple functions.Adv Mater2023;35:2303632

[149]

Fu Q,Zhang X,Xu F.All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors.Energy Environ Sci2023;16:1291-311

[150]

Xiao S,Zhao Z.Strong anti-polyelectrolyte zwitterionic hydrogels with superior self-recovery, tunable surface friction, conductivity, and antifreezing properties.Eur Polym J2021;148:110350

[151]

Zhang G,Shu H.Ultrahigh conductivity and antifreezing zwitterionic sulfobetaine hydrogel electrolyte for low-temperature resistance flexible supercapacitors.J Mater Chem A2023;11:9097-111

[152]

Fu Q,Meng L,Yang J.Engineering self-adhesive polyzwitterionic hydrogel electrolytes for flexible zinc-ion hybrid capacitors with superior low-temperature adaptability.ACS Nano2021;15:18469-82

[153]

Wang S,He X.Polyzwitterionic double-network ionogel electrolytes for supercapacitors with cryogenic-effective stability.Chem Eng J2022;438:135607

[154]

Hu O,Weng S,Zhang X.An adhesive, anti-freezing, and environment stable zwitterionic organohydrogel for flexible all-solid-state supercapacitor.Polymer2022;254:125109

[155]

Sun W,Ji X.Antifreezing zwitterionic hydrogel electrolyte with high conductivity at subzero temperature for flexible sensor and supercapacitor.Sustain Mater Technol2022;32:e00437

[156]

Sun W,Qiao C.Antifreezing proton zwitterionic hydrogel electrolyte via ionic hopping and grotthuss transport mechanism toward solid supercapacitor working at -50 °C.Adv Sci2022;9:e2201679 PMCID:PMC9507348

[157]

Lu X,Lin Z.Engineered exosomes enriched in netrin-1 modRNA promote axonal growth in spinal cord injury by attenuating inflammation and pyroptosis.Biomater Res2023;27:3 PMCID:PMC9843879

[158]

Ballen KK,Broxmeyer HE.Umbilical cord blood transplantation: the first 25 years and beyond.Blood2013;122:491-8 PMCID:PMC3952633

[159]

Bai T,Sinclair A.Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel.Nat Med2019;25:1566-75

[160]

Liu P,Peng W.Zwitterionic betaines over HEPES as the new generation biocompatible pH buffers for cell culture.Bioact Mater2023;24:376-86 PMCID:PMC9817164

[161]

Xiao Z,An Y.Zwitterionic hydrogel for sustained release of growth factors to enhance wound healing.Biomater Sci2021;9:882-91

[162]

Wang S,Bi S.Mussel-inspired adhesive zwitterionic composite hydrogel with antioxidant and antibacterial properties for wound healing.Colloid Surface B2022;220:112914

[163]

Chang Y,Shih YJ,Ruaan RC.Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling.Langmuir2010;26:3522-30

[164]

Chang Y,N’guérékata G.On global solutions to fractional functional differential equations with infinite delay in Fréchet spaces.Comput Math Appl2011;62:1228-37

[165]

Yu Y,de Beer S.Substantially enhanced stability against degrafting of zwitterionic PMPC brushes by utilizing PGMA-linked initiators.Eur Polym J2017;89:221-9

[166]

Chen M,Armes SP.Lubrication at physiological pressures by polyzwitterionic brushes.Science2009;323:1698-701

[167]

Hayes WC.Flow-independent viscoelastic properties of articular cartilage matrix.J Biomech1978;11:407-19

[168]

Charalambides MN,Wanigasooriya L,Xiao W.Effect of friction on uniaxial compression of bread dough.J Mater Sci2005;40:3375-81

[169]

Cai M,Zhou F.Physicochemistry aspects on frictional interfaces.Friction2017;5:361-82

[170]

Wang Z,Liu Y.Synthesis and characterizations of zwitterionic copolymer hydrogels with excellent lubrication behavior.Tribol Int2020;143:106026

[171]

Zhang Z,Liu L,Ratner BD.Zwitterionic hydrogels: an in vivo implantation study.J Biomater Sci Polym Ed2009;20:1845-59

[172]

Zhang K,Sun Y.Gelatin-based composite hydrogels with biomimetic lubrication and sustained drug release.Friction2022;10:232-46

[173]

Galante R,Paradiso P.Sterilization of silicone-based hydrogels for biomedical application using ozone gas: Comparison with conventional techniques.Mater Sci Eng C Mater Biol Appl2017;78:389-97

[174]

Willis SL,Redman RP.A novel phosphorylcholine-coated contact lens for extended wear use.Biomaterials2001;22:3261-72

[175]

Zhang D,Wu L,Ge S.Synthesis and characterization of PVA-HA-silk composite hydrogel by orthogonal experiment.J Bionic Eng2012;9:234-42

[176]

Ma R,Miao F,Peng Y.Novel PVP/PVA hydrogels for articular cartilage replacement.Mater Sci Eng C2009;29:1979-83

[177]

Wang Z,Jiang L,Liu Y.Zwitterionic hydrogel incorporated graphene oxide nanosheets with improved strength and lubricity.Langmuir2019;35:11452-62

[178]

Rao P,Chen L.Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design.Adv Mater2018;30:e1801884

[179]

Sun H,Zhang R,Wu Y.A sulfobetaine zwitterionic polymer-drug conjugate for multivalent paclitaxel and gemcitabine co-delivery.Biomater Sci2021;9:5000-10 PMCID:PMC8277739

[180]

Dobrovolskaia MA,Hall JB.Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution.Mol Pharm2008;5:487-95 PMCID:PMC2613572

[181]

Gafur A,Maruf A,Ye Z.Transforming stealthy to sticky nanocarriers: a potential application for tumor therapy.Biomater Sci2019;7:3581-93

[182]

Yang F,Kuang D,Guo G.Polyzwitterion-crosslinked hybrid tissue with antithrombogenicity, endothelialization, anticalcification properties.Chem Eng J2021;410:128244

[183]

Lin W,Iuster N.Cartilage-inspired, lipid-based boundary-lubricated hydrogels.Science2020;370:335-8

[184]

Li B,Jain P.De novo design of functional zwitterionic biomimetic material for immunomodulation.Sci Adv2020;6:eaba0754 PMCID:PMC7259941

[185]

Li B,He Y,Jiang S.Zwitterionic nanoconjugate enables safe and efficient lymphatic drug delivery.Nano Lett2020;20:4693-9

[186]

Cabanach P,Sheehan D.Zwitterionic 3D-printed non-immunogenic stealth microrobots.Adv Mater2020;32:2003013

[187]

Wang S,Yu G.Zwitterionic-to-cationic charge conversion polyprodrug nanomedicine for enhanced drug delivery.Theranostics2020;10:6629-37 PMCID:PMC7295052

[188]

Yang W,Liu S.Cross-linked carboxybetaine SAMs enable nanoparticles with remarkable stability in complex media.Langmuir2014;30:2522-9

[189]

Liu C,Ma J.Mitigation of biofilm development on thin-film composite membranes functionalized with zwitterionic polymers and silver nanoparticles.Environ Sci Technol2017;51:182-91

[190]

Huang KT,Hsieh PS,Dai NT.Zwitterionic nanocomposite hydrogels as effective wound dressings.J Mater Chem B2016;4:4206-15

[191]

Zhang C,Wang Y.Gd-/CuS-loaded functional nanogels for MR/PA imaging-guided tumor-targeted photothermal therapy.ACS Appl Mater Interfaces2020;12:9107-17

[192]

Xue H,Jin M.Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition.Microsyst Nanoeng2023;9:79 PMCID:PMC10258200

[193]

Sankar Sivasankarapillai V,Chonnur Easwaran E.Application of ionic liquids in rubber elastomers: perspectives and challenges.J Mol Liq2023;382:121846

[194]

Lin S,Liu X.Muscle-like fatigue-resistant hydrogels by mechanical training.Proc Natl Acad Sci U S A2019;116:10244-9 PMCID:PMC6535018

[195]

Na Y,Katsuyama Y.Structural characteristics of double network gels with extremely high mechanical strength.Macromolecules2004;37:5370-4

[196]

Diao W,Ma X.Highly stretchable, ionic conductive and self-recoverable zwitterionic polyelectrolyte-based hydrogels by introducing multiple supramolecular sacrificial bonds in double network.J Appl Polym Sci2019;136:47783

[197]

Mou X,Zhang W.Zwitterionic polymers-armored amyloid-like protein surface combats thrombosis and biofouling.Bioact Mater2024;32:37-51 PMCID:PMC10556425

[198]

Ren J,Wang Z.An anti-swellable hydrogel strain sensor for underwater motion detection.Adv Funct Mater2022;32:2107404

[199]

Liu Y,Wu T.One zwitterionic injectable hydrogel with ion conductivity enables efficient restoration of cardiac function after myocardial infarction.Chem Eng J2021;418:129352

AI Summary AI Mindmap
PDF

268

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/