Catalyst-free solid-state cross-linking of covalent organic frameworks in confined space

Dan Wen , Saikat Das , Yu Zhao , Jingru Fu , Zelong Qiao , Yijing Gao , Yuxia Wang , Ziqiang Zhao , Dapeng Cao , Daoling Peng , Weidong Zhu , Teng Ben

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (1) : 9

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (1) :9 DOI: 10.20517/cs.2023.45
review-article

Catalyst-free solid-state cross-linking of covalent organic frameworks in confined space

Author information +
History +
PDF

Abstract

A “confined space” provides a unique environment to regulate the crystallization thermodynamics and kinetics by confining the reactants in the restricted space dimensions. Solid-state crystal-to-crystal transitions in confined space are controlled by the preassembly of molecules in a crystal lattice and occur inside the lattice. Herein, we report the first case of construction of crystalline cross-linked covalent organic frameworks (CL-COFs) through solid-state cross-linking of acetylenic groups-bridged 2D COFs in spatially limited systems. Specifically, this transformation is thermally induced, yielding CL-COFs with superlative properties, including outstanding enhancement in crystallinity, specific surface area, and stability. We further demonstrate the CL-COFs as high conductivity polymers after iodine doping. This work underscores the opportunity to use lattice-constrained solid-state cross-linking to develop more versatile and feature-rich polyacetylene networks.

Keywords

Solid-state cross-linking / covalent organic frameworks / cross-linked covalent organic frameworks / conducting materials

Cite this article

Download citation ▾
Dan Wen, Saikat Das, Yu Zhao, Jingru Fu, Zelong Qiao, Yijing Gao, Yuxia Wang, Ziqiang Zhao, Dapeng Cao, Daoling Peng, Weidong Zhu, Teng Ben. Catalyst-free solid-state cross-linking of covalent organic frameworks in confined space. Chemical Synthesis, 2024, 4(1): 9 DOI:10.20517/cs.2023.45

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shirakawa H,Macdiarmid AG,Heeger AJ.Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x.J Chem Soc Chem Commun1977;578-80

[2]

Chiang CK,Park YW.Electrical conductivity in doped polyacetylene.Phys Rev Lett1977;39:1098-101

[3]

Shirakawa H.The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel lecture).Angew Chem Int Ed2001;40:2574-80

[4]

Heeger AJ.Nobel lecture: semiconducting and metallic polymers: the fourth generation of polymeric materials.Rev Mod Phys2001;73:681

[5]

Chiang CK,Gau SC.Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x.J Am Chem Soc1978;100:1013-5

[6]

Rasmussen SC.Conjugated and conducting organic polymers: the first 150 years.Chempluschem2020;85:1412-29

[7]

Flory PJ.The heat of combustion and structure of cuprene.J Am Chem Soc1937;59:1149-50

[8]

Rasmussen SC.Cuprene: a historical curiosity along the path to polyacetylene.Bull Hist Chem2017;42:63-78Available from: http://acshist.scs.illinois.edu/awards/OPA%20Papers/2018-Rasmussen.pdf. [Last accessed on 10 Jan 2024]

[9]

Natta G,Corradini P.Stereospecific polymerization of acetylene.Atti Accad Naz Lincei Cl Sci Fis Mat Nat Rend1958;25:3-12. (in German)Available from: https://www.giulionatta.it/pdf/pubblicazioni/00296.pdf. [Last accessed on 10 Jan 2024]

[10]

Reppe W.Cyclizing polymerization of acetylene. III Benzene, benzene derivatives and hydroaromatic compounds.Justus Liebigs Ann Chem1948;560:104-16Available from: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/jlac.19485600104. [Last accessed on 12 Jan 2024]

[11]

Sondheimer F.The synthesis of cycloöctadecanonaene, a new aromatic system.Tetrahedron Lett1959;1:3-6.

[12]

Sondheimer F.Unsaturated macrocyclic compounds. XV.1 Cyclotetradecaheptaene.J Am Chem Soc1960;82:5765-6.

[13]

Miao Z,Ehm C.Cyclic polyacetylene.Nat Chem2021;13:792-9 PMCID:PMC8614158

[14]

Foster JC.How to better control polymer chemistry.Science2019;363:1394.

[15]

Biradha K.Crystal engineering of topochemical solid state reactions.Chem Soc Rev2013;42:950-67

[16]

Grommet AB,Klajn R.Chemical reactivity under nanoconfinement.Nat Nanotechnol2020;15:256-71

[17]

Fu Q.Surface chemistry and catalysis confined under two-dimensional materials.Chem Soc Rev2017;46:1842-74

[18]

Chen Z,Chen X.Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications.Nano Res2016;9:3048-55

[19]

Wegner G.Solid-state polymerization mechanisms.Pure Appl Chem1977;49:443-54

[20]

Tanaka K.Organic photoreaction in the solid state. In: Toda F, editor. Organic solid-state reactions. Dordrecht: Springer; 2002. pp. 109-58.

[21]

Côté AP,Ockwig NW,Matzger AJ.Porous, crystalline, covalent organic frameworks.Science2005;310:1166-70

[22]

Diercks CS.The atom, the molecule, and the covalent organic framework.Science2017;355:eaal1585

[23]

Colson JW.Rationally synthesized two-dimensional polymers.Nature Chem2013;5:453-65

[24]

Zhao Y,Sekine T.Record ultralarge-pores, low density threedimensional covalent organic framework for controlled drug delivery.Angew Chem Int Ed2023;62:e202300172

[25]

Huang L,Asakura Y,Yamauchi Y.Nanoarchitectonics of hollow covalent organic frameworks: synthesis and applications.ACS Nano2023;17:8918-34.

[26]

Yang J,You J.Magnetic covalent organic framework composites for wastewater remediation.Small2023;19:2301044

[27]

Liu K,Liu J.Robust self-floating covalent organic framework/chitosan aerogels for the efficient removal of sulfamerazine.Chem Eng J2023;472:144966

[28]

Huang L,Zhao Y.Monolithic covalent organic frameworks with hierarchical architecture: attractive platform for contaminant remediation.Chem Mater2023;35:2661-82

[29]

Zhang F,Dong X,Lang X.Inserting acetylene into an olefin-linked covalent organic framework for boosting the selective photocatalytic aerobic oxidation of sulfides.Chem Eng J2023;451:138802

[30]

Huang N,Kim J,Jiang D.A photoresponsive smart covalent organic framework.Angew Chem Int Ed2015;54:8704-7 PMCID:PMC4531826

[31]

Acharjya A,Roeser J,Thomas A.Vinylene-linked covalent organic frameworks by base-catalyzed aldol condensation.Angew Chem Int Ed2019;58:14865-70 PMCID:PMC6851556

[32]

Jadhav T,Liu CH.Transformation between 2D and 3D covalent organic frameworks via reversible [2 + 2] cycloaddition.J Am Chem Soc2020;142:8862-70

[33]

Zhu Y,Hu L.Construction of interlayer conjugated links in 2D covalent organic frameworks via topological polymerization.J Am Chem Soc2021;143:7897-902

[34]

Ishii F,Shibata M.Cis-trans isomerization and 13C-NMR chemical shift of polyphenylacetylene.J Polym Sci Part B Polym Phys1999;37:1657-64

[35]

Chan CYK,Lam JWY,Kwok RTK.Construction of functional macromolecules with well-defined structures by indium-catalyzed three-component polycoupling of alkynes, aldehydes, and amines.Macromolecules2013;46:3246-56

[36]

Terao T,Yamabe T,Shirakawa H.13C high-resolution NMR study of undoped polyacetylene.Chem Phys Lett1984;103:347-51

[37]

Taniguchi T,Echizen K,Nishimura T.Facile and versatile synthesis of end-functionalized poly(phenylacetylene)s: a multicomponent catalytic system for well-controlled living polymerization of phenylacetylenes.Angew Chem Int Ed Engl2020;59:8670-80

[38]

Jin YJ,Miyata M.Influence of a hydrodynamic environment on chain rigidity, liquid crystallinity, absorptivity, and photoluminescence of hydrogen-bonding-assisted helical poly(phenylacetylene).RSC Adv2016;6:36661-6

[39]

Shi G,Xu Q,Wan X.Enantioseparation by high-performance liquid chromatography on proline-derived helical polyacetylenes.Polym Chem2021;12:242-53

[40]

Bontapalle S.Understanding the mechanism of ageing and a method to improve the ageing resistance of conducting PEDOT:PSS films.Polym Degrad Stab2020;171:109025

[41]

Li JR.Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra.Nature Chem2010;2:893-8

[42]

Li J,Wang D.A deprotection-free method for high-yield synthesis of graphdiyne powder with in situ formed cuo nanoparticles.Angew Chem Int Ed2022;134:e202210242

[43]

Ma K,Wang X.Periodically interrupting bonding behavior to reformat delocalized electronic states of graphdiyne for improved electrocatalytic hydrogen evolution.Angew Chem Int Ed Engl2022;134:e202211094

[44]

Zhuo S,Liu L.Dual-template engineering of triple-layered nanoarray electrode of metal chalcogenides sandwiched with hydrogen-substituted graphdiyne.Nat Commun2018;9:3132

[45]

Goldberg IB,Newman PR,Macdiarmid AG.Electron spin resonance of polyacetylene and AsF5-doped polyacetylene.J Chem Phys1979;70:1132-6

[46]

Bernier P,Galtier M.Electronic properties of non-doped and doped polyacetylene films studied by E.S.R.J Phyique Lett1979;40:297-301

[47]

Bartl A,Froehner J,Pietrass B.Influence of iodine doping on ESR properties of polyacetylene.Synth Met1984;10:151-6

[48]

Bartl A,Park YW,Suh DS.Quantum transport in AuCl3 doped polyacetylene studied by ESR.Synth Met2001;117:21-5

[49]

Tang X,Xu Q.Design of photothermal covalent organic frameworks by radical immobilization.CCS Chem2022;4:2842-53

[50]

Komaba K.Soliton excitations in liquid crystal polyacetylene.Mol Cryst Liquid Crystals2020;703:69-78

[51]

Zhan X,Shen Y.Vibration and photoelectron spectroscopies of iodine-doped poly(p-diethynylbenzene).Eur Polym J2002;38:2349-53

[52]

Weber J,Thomas A.Microporous networks of high-performance polymers: elastic deformations and gas sorption properties.Macromolecules2008;41:2880-5

[53]

Chen D,Xing G,Chen L.An upgraded “two-in-one” strategy toward highly crystalline covalent organic frameworks.Chem Eur J2020;26:8377-81.

[54]

Egerton RF,Malac M.Radiation damage in the TEM and SEM.Micron2004;35:399-409

[55]

Seo JM,Jeong HY.Converting unstable imine-linked network into stable aromatic benzoxazole-linked one via post-oxidative cyclization.J Am Chem Soc2019;141:11786-90

[56]

Smith BJ,Chavez AD,Dichtel WR.Growth rates and water stability of 2D boronate ester covalent organic frameworks.Chem Commun2015;51:7532-5

[57]

Pachfule P,Roeser J.Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation.J Am Chem Soc2018;140:1423-7

[58]

Mondloch JE,Farha OK.Activation of metal-organic framework materials.CrystEngComm2013;15:9258-64

[59]

Zhu D.Ultralow surface tension solvents enable facile COF activation with reduced pore collapse.ACS Appl Mater Interfaces2020;12:33121-7

[60]

Yokozawa T.Transformation of step-growth polymerization into living chain-growth polymerization.Chem Rev2016;116:1950-68

[61]

Miyatake K,Hay AS.High molecular weight aromatic polyformals free of macrocyclic oligomers. A condensative chain polymerization reaction.Macromolecules2001;34:4288-90

[62]

Chien JCW.Kinetics of acetylene polymerization and structures of polyacetylene.Polym Eng Sci1985;25:635-42

[63]

Schen MA,Chien JCW.Kinetics and mechanism of acetylene polymerization.J Polym Sci Polym Chem Ed1983;21:2787-812

[64]

Basescu N,Moses D,Naarmann H.High electrical conductivity in doped polyacetylene.Nature1987;327:403-5

[65]

Park YW,Druy MA.Electrical transport in doped polyacetylene.J Chem Phys1980;73:946-57

[66]

Jin YJ.Properties, functions, chemical transformation, nano-, and hybrid materials of poly(diphenylacetylene)s toward sensor and actuator applications.Polym Rev2017;57:175-99

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/