Electrochemical-induced hydrofunctionalizations of alkenes and alkynes

Yahui Zhang , Xiangyu Zhao , Guangyan Qing

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (2) : 16

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (2) :16 DOI: 10.20517/cs.2023.38
review-article

Electrochemical-induced hydrofunctionalizations of alkenes and alkynes

Author information +
History +
PDF

Abstract

The hydrofunctionalizations of readily available alkenes and alkynes are one of the most effective and useful routes to afford diverse value-added compounds. Although traditional hydrofunctionalization strategies catalyzed by metal catalysts present convenient approaches, they are also accompanied by resource consumption and environmental crisis. Electrosynthesis, as a renewable and sustainable technology, has become a cost- and atom-efficient and useful synthetic route. In this review, the electrochemical-induced hydrofunctionalizations of alkenes and alkynes are summarized and presented. In each section, the electrochemical synthetic strategy to access hydrogenation and other hydrofunctionalization (hydroboration, hydrosilylation, hydroalkylation, hydroalkoxylation, hydrocyanation, hydrocarboxylation, etc.) products are elaborated in detail separately. Finally, the current challenges and prospects for electrochemical hydrofunctionalizations of unsaturated carbon‒carbon (C‒C) bonds are also discussed briefly.

Keywords

Electrochemical / alkene / alkyne / hydrofunctionalization / synthesis

Cite this article

Download citation ▾
Yahui Zhang, Xiangyu Zhao, Guangyan Qing. Electrochemical-induced hydrofunctionalizations of alkenes and alkynes. Chemical Synthesis, 2024, 4(2): 16 DOI:10.20517/cs.2023.38

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang G,Zhao J,Zhang Q.Radical cascade reactions of unsaturated C‒C bonds involving migration.Sci China Chem2019;62:1476-91

[2]

Li G,Jiang X.Asymmetric synthesis of allylic compounds via hydrofunctionalisation and difunctionalisation of dienes, allenes, and alkynes.Chem Soc Rev2020;49:2060-118

[3]

Dong B,Xie L.Recent developments on 1,2-difunctionalization and hydrofunctionalization of unactivated alkenes and alkynes involving C–S bond formation.Org Chem Front2023;10:1322-45

[4]

Beller M,Tillack A.Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: recent developments and trends.Angew Chem Int Ed Engl2004;43:3368-98

[5]

Enachi A,Zaretzke MK.[(NHC)CoR2]: pre-catalysts for homogeneous olefin and alkyne hydrogenation.Chem Commun2018;54:13798-801

[6]

Sánchez-delgado RA.Kinetic studies as a tool for the elucidation of the mechanisms of metal complex-catalyzed homogeneous hydrogenation reactions.Coordin Chem Rev2000;196:249-80

[7]

Rangheard C,Phua PH,Lefort L.At the frontier between heterogeneous and homogeneous catalysis: hydrogenation of olefins and alkynes with soluble iron nanoparticles.Dalton Trans2010;39:8464-71

[8]

King AO,Negishi E.Palladium-catalyzed heterogeneous hydrogenation. In: Negishi E, editor. Handbook of organopalladium chemistry for organic synthesis. New York: John Wiley & Sons, Inc.; 2002. pp. 2719-52.

[9]

Thomas S.Heterogeneous hydrogenation of C=C and C≡C bonds. In: Knochel P, Molander GA, editors. Comprehensive Organic Synthesis II. Elsevier; 2014. pp. 564-604.

[10]

Card RJ,Neckers DC.Poly(styryl)bipyridinepalladium complexes as heterogeneous catalysts for hydrogenation of alkenes and alkynes.J Org Chem1979;44:1095-8

[11]

Lam J,Mosaferi E.FLP catalysis: main group hydrogenations of organic unsaturated substrates.Chem Soc Rev2019;48:3592-612

[12]

Li M,Jiang H.Recent advances in silver-catalyzed transformations of electronically unbiased alkenes and alkynes.ChemCatChem2020;12:5034-50

[13]

Torres-Calis A.Homogeneous manganese-catalyzed hydrofunctionalizations of alkenes and alkynes: catalytic and mechanistic tendencies.ACS Omega2022;7:37008-38 PMCID:PMC9608411

[14]

Chen J,Lu Z.Recent advances in hydrometallation of alkenes and alkynes via the first row transition metal catalysis.Chin J Chem2018;36:1075-109

[15]

Pirnot MT,Buchwald SL.Copper hydride catalyzed hydroamination of alkenes and alkynes.Angew Chem Int Ed Engl2016;55:48-57 PMCID:PMC4782926

[16]

Greenhalgh MD,Thomas SP.Iron-catalysed hydrofunctionalisation of alkenes and alkynes.ChemCatChem2015;7:190-222

[17]

Crossley SW,Martinez RM.Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins.Chem Rev2016;116:8912-9000 PMCID:PMC5872827

[18]

Guo J,Chen J,Lu Z.Iron- and Cobalt-catalyzed asymmetric hydrofunctionalization of alkenes and alkynes.Acc Chem Res2021;54:2701-16

[19]

Yin X,Guo K,Wang X.Palladium-catalyzed enantioselective hydrofunctionalization of alkenes: recent advances.Eur J Org Chem2023;26:e202300783

[20]

Müller TE,Yus M,Tada M.Hydroamination: direct addition of amines to alkenes and alkynes.Chem Rev2008;108:3795-892

[21]

Chiappe C,Conte V.Stereoselective halogenations of alkenes and alkynes in ionic liquids.Org Lett2001;3:1061-3

[22]

Choi DS,Shin US,Song CE.Thermodynamically- and kinetically-controlled Friedel-Crafts alkenylation of arenes with alkynes using an acidic fluoroantimonate(v) ionic liquid as catalyst.Chem Commun2007;3482-4

[23]

Balaraman E,Kumara Swamy K.Hydrophosphonylation of activated alkenes and alkynes via fluoride ion activation in ionic liquid medium.Tetrahedron2009;65:7603-10

[24]

Orella MJ,Brushett FR.Emerging opportunities for electrochemical processing to enable sustainable chemical manufacturing.Curr Opin Chem Eng2018;20:159-67

[25]

Li G,Peng C,Chen W.Interface chemistry for sodium metal anodes/batteries: a review.Chem Synth2022;2:16

[26]

Yin Y,Han B.Two-dimensional materials: synthesis and applications in the electro-reduction of carbon dioxide.Chem Synth2022;2:19

[27]

Blank S,Boucher DG.Electrochemical cascade reactions for electro-organic synthesis.Curr Opin Electrochem2022;35:101049

[28]

Meyer TH,Tian C.Powering the future: how can electrochemistry make a difference in organic synthesis?.Chem2020;6:2484-96

[29]

Wang C,Wang Y,Zhou J.Recent advances in nonmetallic modulation of palladium-based electrocatalysts.Chem Synth2023;3:8

[30]

Cheng X,Mei T,Xu K.Recent applications of homogeneous catalysis in electrochemical organic synthesis.CCS Chem2022;4:1120-52

[31]

Zhong J,Zhang D.Merging cobalt catalysis and electrochemistry in organic synthesis.Chinese Chem Lett2021;32:963-72

[32]

Yan M,Baran PS.Synthetic organic electrochemical methods since 2000: on the verge of a renaissance.Chem Rev2017;117:13230-319 PMCID:PMC5786875

[33]

Frontana-uribe BA,Ibanez JG,Vasquez-medrano R.Organic electrosynthesis: a promising green methodology in organic chemistry.Green Chem2010;12:2099-119

[34]

Blanco DE,Modestino MA.Enhancing selectivity and efficiency in the electrochemical synthesis of adiponitrile.React Chem Eng2019;4:8-16

[35]

Francke R.Redox catalysis in organic electrosynthesis: basic principles and recent developments.Chem Soc Rev2014;43:2492-521

[36]

Schiffer ZJ.Electrification and decarbonization of the chemical industry.Joule2017;1:10-4

[37]

Botte GG.Electrochemical manufacturing in the chemical industry.Electrochem Soc interface2014;23:49-55

[38]

Siu JC,Lin S.Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery.Acc Chem Res2020;53:547-60 PMCID:PMC7245362

[39]

Mei H,Liu J,Han J.Recent advances on the electrochemical difunctionalization of alkenes/alkynes.Chin J Chem2019;37:292-301

[40]

Novaes LFT,Shen Y,Meinhardt JM.Electrocatalysis as an enabling technology for organic synthesis.Chem Soc Rev2021;50:7941-8002 PMCID:PMC8294342

[41]

Ma C,Liu D.Transition metal-catalyzed organic reactions in undivided electrochemical cells.Chem Sci2021;12:12866-73 PMCID:PMC8514006

[42]

Ali T,Iqbal W,Shah R.Electro-synthesis of organic compounds with heterogeneous catalysis.Adv Sci2022;10:e2205077 PMCID:PMC9811472

[43]

Jiao KJ,Yang QL,Mei TS.Site-selective C‒H functionalization via synergistic use of electrochemistry and transition metal catalysis.Acc Chem Res2020;53:300-10

[44]

Yuan Y.Electrochemical oxidative cross-coupling with hydrogen evolution reactions.Acc Chem Res2019;52:3309-24

[45]

Röckl JL,Franke R.A decade of electrochemical dehydrogenative C,C-coupling of aryls.Acc Chem Res2020;53:45-61

[46]

Yuan Y,Lei A.Recent advances in electrochemical oxidative cross-coupling with hydrogen evolution involving radicals.Chem Soc Rev2021;50:10058-86

[47]

Li Y,Guo W.A guide to organic electroreduction using sacrificial anodes.Chem Soc Rev2023;52:1168-88

[48]

Xiang H,Qian W.Electroreductively induced radicals for organic synthesis.Molecules2023;28:857 PMCID:PMC9866059

[49]

Yang J,Yan K,Wen J.Advances in electrochemical hydrogenation since 2010.Adv Synth Catal2021;363:5407-16

[50]

Shi Z,Lu H.Recent advances in the electrochemical hydrogenation of unsaturated hydrocarbons.Curr Opin Electrochem2021;28:100713

[51]

Tungler A,Hada V.Heterogeneous catalytic asymmetric hydrogenation of the C=C bond.Curr Org Chem2006;10:1569-83

[52]

Fürstner A.trans-Hydrogenation, gem-hydrogenation, and trans-hydrometalation of alkynes: an interim report on an unorthodox reactivity paradigm.J Am Chem Soc2019;141:11-24

[53]

Wang D.The golden age of transfer hydrogenation.Chem Rev2015;115:6621-86

[54]

Lebedeva O,Каlenchuk A.Advances and prospects in electrocatalytic hydrogenation of aromatic hydrocarbons for synthesis of “loaded” liquid organic hydrogen carriers.Curr Opin Electrochem2023;38:101207

[55]

Robertson JC,Bissember AC.Synthetic applications of light, electricity, mechanical force and flow.Nat Rev Chem2019;3:290-304

[56]

Kraft S,Kargbo RB.Recent advances in asymmetric hydrogenation of tetrasubstituted olefins.J Am Chem Soc2017;139:11630-41

[57]

Patil N.Palladium-catalyzed cascade reactions of highly activated olefins.Synlett2007;2007:1994-2005

[58]

Tomida S,Furukawa S,Tajima T.Electroreductive hydrogenation of activated olefins using the concept of site isolation.Electrochem Commun2016;73:46-9

[59]

Huang B,Yang C.Electrochemical 1,4-reduction of α,β-unsaturated ketones with methanol and ammonium chloride as hydrogen sources.Chem Commun2019;55:6731-4

[60]

Loh YY,Hoover AJ.Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds.Science2017;358:1182-7 PMCID:PMC5907472

[61]

Liu X,Qiu J,Li G.Chemical-reductant-free electrochemical deuteration reaction using deuterium oxide.Angew Chem Int Ed Engl2020;59:13962-7

[62]

Li J,Liu X,Li G.Electrochemical hydrogenation with gaseous ammonia.Angew Chem Int Ed Engl2019;58:1759-63

[63]

Qin Y,Zou Z.Metal-free chemoselective hydrogenation of unsaturated carbon–carbon bonds via cathodic reduction.Org Chem Front2020;7:1817-22

[64]

Qin H,Yan K.Electrochemical-induced hydrogenation of electron-deficient internal olefins and alkynes with CH3OH as hydrogen donor.Adv Synth Catal2021;363:2104-9

[65]

Derosa J,Peters JC.Electrocatalytic reduction of C‒C π-bonds via a cobaltocene-derived concerted proton-electron transfer mediator: fumarate hydrogenation as a model study.J Am Chem Soc2021;143:9303-7

[66]

Gnaim S,Zhang HJ.Cobalt-electrocatalytic HAT for functionalization of unsaturated C‒C bonds.Nature2022;605:687-95 PMCID:PMC9206406

[67]

Bi C,Jia Z.Electrochemical reduction of diarylketones and aryl alkenes.ChemCatChem2023;15:e202300258

[68]

Kolb S.Site-selective hydrogenation/deuteration of benzylic olefins enabled by electroreduction using water.Chemistry2023;29:e202300849

[69]

Ananikov VP.Alkyne and alkene insertion into metal–heteroatom and metal–hydrogen bonds: the key stages of hydrofunctionalization process. In: Ananikov V, Tanaka M, editors. Hydrofunctionalization. Berlin: Springer Berlin Heidelberg; 2013. pp. 1-19.

[70]

Wu X,Liu J.Intercepting hydrogen evolution with hydrogen-atom transfer: electron-initiated hydrofunctionalization of alkenes.J Am Chem Soc2022;144:17783-91

[71]

Crespo-quesada M,Dessimoz A.Modern trends in catalyst and process design for alkyne hydrogenations.ACS Catal2012;2:1773-86

[72]

Moreno-Marrodan C,Barbaro P.Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes.Beilstein J Org Chem2017;13:734-54 PMCID:PMC5405685

[73]

Michaelides IN.Catalytic stereoselective semihydrogenation of alkynes to E-alkenes.Angew Chem Int Ed Engl2013;52:806-8

[74]

Delgado JA,Claver C,Godard C.Advances in the preparation of highly selective nanocatalysts for the semi-hydrogenation of alkynes using colloidal approaches.Dalton Trans2017;46:12381-403

[75]

Liu Z,Ren Z.Advances in selective electrocatalytic hydrogenation of alkynes to alkenes.Chemistry2023;29:e202202979

[76]

Bortolami M,Rocco D,Chiarotto I.Alkynes as building blocks, intermediates and products in the electrochemical procedures since 2000.ChemElectroChem2021;8:3604-13

[77]

Sherbo RS,Chiykowski VA,Berlinguette CP.Complete electron economy by pairing electrolysis with hydrogenation.Nat Catal2018;1:501-7

[78]

Kurimoto A,Cao Y,Berlinguette CP.Electrolytic deuteration of unsaturated bonds without using D2.Nat Catal2020;3:719-26

[79]

Li B.Highly selective electrochemical hydrogenation of alkynes: rapid construction of mechanochromic materials.Sci Adv2019;5:eaaw2774 PMCID:PMC6534392

[80]

Wu Y,Wang C,Zhang B.Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd-P cathode.Angew Chem Int Ed Engl2020;59:21170-5

[81]

Li H,Wu Y.σ-Alkynyl adsorption enables electrocatalytic semihydrogenation of terminal alkynes with easy-reducible/passivated groups over amorphous PdSx nanocapsules.J Am Chem Soc2022;144:19456-65

[82]

Gao Y,Wang C.Field-induced reagent concentration and sulfur adsorption enable efficient electrocatalytic semihydrogenation of alkynes.Sci Adv2022;8:eabm9477 PMCID:PMC8865775

[83]

Lee MY,Kaeffer N.Electrocatalytic semihydrogenation of alkynes with [Ni(bpy)3]2+.JACS Au2022;2:573-8 PMCID:PMC8970006

[84]

Bage AD,Hunt TA,Thomas SP.The hidden role of boranes and borohydrides in hydroboration catalysis.ACS Catal2020;10:13479-86

[85]

Bose SK,Kuehn L.First-row d-block element-catalyzed carbon‒boron bond formation and related processes.Chem Rev2021;121:13238-341

[86]

Zuo Z,Liu G.Cobalt-catalyzed hydroboration and borylation of alkenes and alkynes.Synlett2018;29:1421-9

[87]

Moniruzzaman M,Ali MK.Progress in the electrochemical synthesis of organoboron compounds.Asian J Org Chem2023;12:e202300090

[88]

Yin C,Mei J,Zhang H.Electrochemical synthesis and transformation of organoboron compounds.Org Chem Front2023;10:3361-77

[89]

Zhang Y,Bi C.Selective electrocatalytic hydroboration of aryl alkenes.Green Chem2021;23:1691-9

[90]

Aelterman M,Poisson T.Electrochemical borylation of electron-deficient alkenes and allenoates.Eur J Org Chem2023;26:e202300063

[91]

Yuan Q,Guo L,Xia W.Metal-free electrochemical hydroboration of olefins.Adv Synth Catal2023;365:1788-93

[92]

Guo C,Wang S.Selective electroreductive hydroboration of olefins with B2pin2.J Org Chem2023;88:4569-80

[93]

Aelterman M,Jubault P.Electrochemical hydroboration of alkynes.Chemistry2021;27:8277-82 PMCID:PMC8251609

[94]

Qiu H,Qu H.Chemoselective electrocatalytic hydroboration of alkynes with pinacolborane.J Mol Struct2022;1266:133463

[95]

Pal PP,Hajra A.Recent advances in carbosilylation of alkenes and alkynes.Org Biomol Chem2023;21:2272-94

[96]

Li L,Xu Z.Catalytic asymmetric silicon‒carbon bond-forming transformations based on Si‒H functionalization.Sci China Chem2023;66:1654-87

[97]

Sun J.Cobalt complex-catalyzed hydrosilylation of alkenes and alkynes.ACS Catal2016;6:290-300

[98]

Jouikov V.Electrochemically induced silylation of unsaturated compounds.Electrochimica Acta1996;41:469-70

[99]

Kuciński K.Electrifying synthesis of organosilicon compounds - from electrosynthesis to electrocatalysis.Inorg Chem Front2023;10:1382-94

[100]

Zhang W,Martinez Alvarado JI,Lin S.Deep electroreductive chemistry: harnessing carbon- and silicon-based reactive intermediates in organic synthesis.ACS Catal2023;13:8038-48

[101]

Lu L,Lai Y.An electroreductive approach to radical silylation via the activation of strong Si‒Cl bond.J Am Chem Soc2020;142:21272-8 PMCID:PMC7951502

[102]

Biremond T,Poisson T.Electrochemical hydrosilylation of alkynes.ACS Org Inorg Au2022;2:148-52 PMCID:PMC9954247

[103]

Zhou H,Zhang J,Tang H.Electrochemical hydrosilylation of electron-withdrawing alkenes.Adv Synth Catal2023;365:1591-5

[104]

Yang KS,Liu Z.Catalytic, regioselective hydrocarbofunctionalization of unactivated alkenes with diverse C‒H nucleophiles.J Am Chem Soc2016;138:14705-12

[105]

Yang D,Li MH.Directed cobalt-catalyzed anti-markovnikov hydroalkylation of unactivated alkenes enabled by “Co‒H” catalysis.Org Lett2020;22:4333-8

[106]

Wu X,Ye KY.Ti-catalyzed radical alkylation of secondary and tertiary alkyl chlorides using michael acceptors.J Am Chem Soc2018;140:14836-43 PMCID:PMC6530901

[107]

Zhang W.Electroreductive carbofunctionalization of alkenes with alkyl bromides via a radical-polar crossover mechanism.J Am Chem Soc2020;142:20661-70 PMCID:PMC7951757

[108]

Zhang X.Electrochemical reductive functionalization of alkenes with deuterochloroform as a one-carbon deuteration Block.Org Lett2022;24:8645-50

[109]

Hu P,Malapit CA.Electroreductive olefin‒ketone coupling.J Am Chem Soc2020;142:20979-86 PMCID:PMC8353665

[110]

Wu H,Deng W.Cathodic regioselective coupling of unactivated aliphatic ketones with alkenes.Org Lett2022;24:1412-7

[111]

Xu H,Nie F,Jiang Z.Metal-free hydropyridylation of thioester-activated alkenes via electroreductive radical coupling.J Org Chem2021;86:16204-12

[112]

Zhang S,Shi J.Regioselective umpolung addition of dicyanobenzene to α,β-unsaturated alkenes enabled by electrochemical reduction.Org Chem Front2022;9:1261-6

[113]

Zhang S,Li X.Electroreductive 4-pyridylation of electron-deficient alkenes with assistance of Ni(acac)2.Org Lett2020;22:3570-5

[114]

Nanda SK.Transition metal-catalyzed hydroalkoxylation of alkynes: an overview.Chemistry2021;27:15571-604

[115]

Goodwin JA.Correction: Regioselectivity in the Au-catalyzed hydration and hydroalkoxylation of alkynes.Chem Commun2016;521:6731

[116]

Xie W.Asymmetric synthesis of ethers by catalytic alkene hydro­alkoxy­lation.Synthesis2020;52:2127-46

[117]

Kennemur JL,Scharf MJ.Catalytic asymmetric hydroalkoxylation of C‒C multiple bonds.Chem Rev2021;121:14649-81 PMCID:PMC8704240

[118]

Yang F,Liu H,Mo F.Electrocatalytic oxidative hydrofunctionalization reactions of alkenes via Co(II/III/IV) cycle.ACS Catal2022;12:2132-7

[119]

Park SH,Shin K.Electrocatalytic radical-polar crossover hydroetherification of alkenes with phenols.ACS Catal2022;12:10572-80

[120]

Fleming FF,Ravikumar PC,Shook BC.Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore.J Med Chem2010;53:7902-17 PMCID:PMC2988972

[121]

Wang T.Direct approaches to nitriles via highly efficient nitrogenation strategy through C‒H or C‒C bond cleavage.Acc Chem Res2014;47:1137-45

[122]

Wang MX.Enantioselective biotransformations of nitriles in organic synthesis.Acc Chem Res2015;48:602-11

[123]

Strache JP,Adler A,Schmalz H.Enantioselective nickel-catalyzed hydrocyanation of homostilbenes.Eur J Org Chem2023;26:e202300050

[124]

Song L,Ernst BG.Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes.Nat Chem2020;12:747-54 PMCID:PMC7390704

[125]

Zhang Y.Catalytic hydrocarboxylation of alkenes and alkynes with CO2.Angew Chem Int Ed Engl2011;50:6210-2

[126]

Xiao W,Wu J.Recent advances in reactions involving carbon dioxide radical anion.ACS Catal2023;13:15991-6011

[127]

Xu QJ,Wang XF,Guo H.Understanding oxygen vacant hollow structure CeO2@In2O3 heterojunction to promote CO2 reduction.Rare Met2023;42:1888-98

[128]

Gaydou M,Juliá-Hernández F.Site-selective catalytic carboxylation of unsaturated hydrocarbons with CO2 and water.J Am Chem Soc2017;139:12161-4

[129]

Seo H,Jamison TF.Direct β-selective hydrocarboxylation of styrenes with CO2 enabled by continuous flow photoredox catalysis.J Am Chem Soc2017;139:13969-72

[130]

Wang S,Wang Y.Recent advances in electrocarboxylation with CO2.Chem Asian J2022;17:e202200543

[131]

Liu X,Tao L,Zhang W.Recent advances in electrochemical carboxylation reactions using carbon dioxide.Green Chem Eng2022;3:125-37

[132]

Senboku H.Electrochemical fixation of carbon dioxide: synthesis of carboxylic acids.Chem Rec2021;21:2354-74

[133]

Kim Y,Balamurugan M,Min BK.Electrochemical β-selective hydrocarboxylation of styrene using CO2 and water.Adv Sci2020;7:1900137 PMCID:PMC7001630

[134]

Alkayal A,Montanaro S,Malkov AV.Harnessing applied potential: selective β-hydrocarboxylation of substituted olefins.J Am Chem Soc2020;142:1780-5

[135]

Wang H,Fang H,Lu J.Electrochemical dicarboxylation of styrene: synthesis of 2-phenylsuccinic acid.Chin J Chem2007;25:913-6

[136]

Sheta AM,Mashaly MA.Selective electrosynthetic hydrocarboxylation of α,β-unsaturated esters with carbon dioxide**.Angew Chem Int Ed Engl2021;60:21832-7 PMCID:PMC8518608

[137]

Liu J,Fu Q.Advances in radical phosphorylation from 2016 to 2021.Chem Synth2021;1:9

[138]

Zhong G,He L.Regioselectivity of N-heteroarene electrocarboxylations: divided vs. undivided cell.Chem Synth2023;3:19

[139]

Liu W,Tang J.Energy-efficient anodic reactions for sustainable hydrogen production via water electrolysis.Chem Synth2023;3:44

[140]

Li S,Wang M.Optimizing the reaction pathway of nitride electrode by co-doping strategy for boosting alkaline hydrogen evolution reaction kinetics.Sci China Mater2023;66:4639-49

[141]

Yuan Y.Is electrosynthesis always green and advantageous compared to traditional methods?.Nat Commun2020;11:802 PMCID:PMC7005282

[142]

Rein J,Wismer MK.Unlocking the potential of high-throughput experimentation for electrochemistry with a standardized microscale reactor.ACS Cent Sci2021;7:1347-55 PMCID:PMC8393209

AI Summary AI Mindmap
PDF

80

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/