Energy transfer process, luminescence optimizing and various applications of lanthanide complexes

Wei Fan , Huijuan Wang , Xuejian Huang , Tingchang Shi , Jing Du , Hai-Bing Xu

Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (1) : 12

PDF
Chemical Synthesis ›› 2024, Vol. 4 ›› Issue (1) :12 DOI: 10.20517/cs.2023.35
review-article

Energy transfer process, luminescence optimizing and various applications of lanthanide complexes

Author information +
History +
PDF

Abstract

Modulating the spectroscopic overlap between the emission bands of donors and the absorption spectra of acceptors by various simulations, it is possible to systematically investigate the emission behaviors of lanthanide complexes under different conditions. To establish the relationships between emission behaviors and various external simulations, it is necessary to study the energy transfer rate and efficiency between the donor and acceptor under different conditions to clarify the luminescent mechanism of the complexes, providing a theoretical basis for high-performance smart materials. This review focuses on the recent progress of luminescence performance of lanthanide complexes, including energy transfer mechanisms, emission color modulation, the strategies for optimizing lanthanide luminescence, and finally, various applications based on luminescence performance of lanthanide complexes and lanthanide metal-organic frameworks.

Keywords

Lanthanide complexes / downshifting luminescence / upconversion luminescence / molecular motor / pH-responsive delivery / dual-modal imaging

Cite this article

Download citation ▾
Wei Fan, Huijuan Wang, Xuejian Huang, Tingchang Shi, Jing Du, Hai-Bing Xu. Energy transfer process, luminescence optimizing and various applications of lanthanide complexes. Chemical Synthesis, 2024, 4(1): 12 DOI:10.20517/cs.2023.35

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Heffern MC,Meade TJ.Lanthanide probes for bioresponsive imaging.Chem Rev2014;114:4496-539 PMCID:PMC3999228

[2]

Pershagen E,Borbas KE.Luminescent lanthanide complexes with analyte-triggered antenna formation.J Am Chem Soc2012;134:9832-5

[3]

Pei K,Zhao M.Polarized emission of lanthanide metal-organic framework (Ln-MOF) crystals for high-capacity photonic barcodes.Adv Opt Mater2022;10:2102143

[4]

Jia T.Lanthanide nanoparticles for near-infrared II theranostics.Coord Chem Rev2022;471:214724

[5]

Song B,Shi W.A dual-modal nanoprobe based on Eu(iii) complex-MnO2 nanosheet nanocomposites for time-gated luminescence-magnetic resonance imaging of glutathione in vitro and in vivo.Nanoscale2019;11:6784-93

[6]

Sørensen TJ,Blackburn OA,Kenwright AM.Preparation and study of an f,f,f',f'' covalently linked tetranuclear hetero-trimetallic complex - a europium, terbium, dysprosium triad.Chem Commun2013;49:783-5

[7]

Hasegawa Y,Nakanishi T.Effective photosensitized, electrosensitized, and mechanosensitized luminescence of lanthanide complexes.NPG Asia Mater2018;10:52-70

[8]

Binnemans K.Lanthanide-based luminescent hybrid materials.Chem Rev2009;109:4283-374

[9]

D’aléo A,Ouahab L,Maury O.Charge transfer excited states sensitization of lanthanide emitting from the visible to the near-infra-red.Coord Chem Rev2012;256:1604-20

[10]

Xu LJ,Chen ZN.Recent advances in lanthanide luminescence with metal-organic chromophores as sensitizers.Coord Chem Rev2014;273-4:47-62

[11]

Xu HB,Xie ZL,Chen ZN.Heterododecanuclear Pt6Ln6 (Ln = Nd, Yb) arrays of 4-ethynyl-2,2'-bipyridine with sensitized near-IR lanthanide luminescence by Pt → Ln energy transfer.Chem Commun2007;2744-6

[12]

Xu HB,Deng JG.Sensitized near infrared emission through supramolecular d → f energy transfer within an ionic Ru(ii)-Er(iii) pair.Dalton Trans2018;47:2073-8

[13]

Mara D,Smet PF,Van Hecke K.Vibrational quenching in near-infrared emitting lanthanide complexes: a quantitative experimental study and novel insights.Chemistry2019;25:15944-56

[14]

Han S,Gu Q.Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright.Nature2020;587:594-9

[15]

Qin CY,Xie XB,Li HQ.Crystalline phase-dependent cations migration in core-shell lanthanide-doped upconversion nanoparticles.Chem Synth2023;3:29

[16]

Zhu X,Feng W.Anti-Stokes shift luminescent materials for bio-applications.Chem Soc Rev2017;46:1025-39

[17]

Charbonnière LJ.Bringing upconversion down to the molecular scale.Dalton Trans2018;47:8566-70

[18]

Hyppänen I,Ääritalo T,Kankare J.Photon upconversion in a molecular lanthanide complex in anhydrous solution at room temperature.ACS Photonics2014;1:394-7

[19]

Singh-Rachford TN.Photon upconversion based on sensitized triplet-triplet annihilation.Coord Chem Rev2010;254:2560-73

[20]

Kiseleva N,Dee C.Lanthanide sensitizers for large anti-stokes shift near-infrared-to-visible triplet - triplet annihilation photon upconversion.J Phys Chem Lett2020;11:2477-81

[21]

Kalmbach J,You Y.Near-IR to near-IR upconversion luminescence in molecular chromium ytterbium salts.Angew Chem Int Ed Engl2020;59:18804-8 PMCID:PMC7589230

[22]

Chorazy S,Sieklucka B.Lanthanide photoluminescence in heterometallic polycyanidometallate-based coordination networks.Molecules2017;22:1902 PMCID:PMC6150171

[23]

Wang C,Dorn M.Deuterated molecular ruby with record luminescence quantum yield.Angew Chem Int Ed Engl2018;57:1112-6

[24]

Sun G,Wang Y.Cooperative sensitization upconversion in solution dispersions of co-crystal assemblies of mononuclear Yb3+ and Eu3+ complexes.Angew Chem Int Ed Engl2023;62:e202304591

[25]

Punj D,Moparthi SB.A plasmonic “antenna-in-box” platform for enhanced single-molecule analysis at micromolar concentrations.Nat Nanotechnol2013;8:512-6

[26]

Xu HB,Ni J,Chen ZN.Conformation changes and luminescent properties of Au-Ln (Ln = Nd, Eu, Er, Yb) arrays with 5-ethynyl-2,2'-bipyridine.Inorg Chem2008;47:10744-52

[27]

Xu HB,Kang B.Designed synthesis and photophysical properties of multifunctional hybrid lanthanide complexes.RSC Adv2013;3:11367-84

[28]

Xu HB,Chen XL.Regulating structural dimensionality and emission colors by organic conjugation between SmIII at a fixed distance.Dalton Trans2018;47:6908-16

[29]

Gálico DA,Sigoli FA.Room-temperature upconversion in a nanosized {Ln15} molecular cluster-aggregate.ACS Nano2021;15:5580-5

[30]

Xu HB,Kang B,Zhang Y.Walkable dual emissions.Sci Rep2013;3:2199 PMCID:PMC3712315

[31]

Huang K,Shi M,Yi T.Reply to comment on “aggregation-induced phosphorescent emission (AIPE) of iridium(iii) complexes”: origin of the enhanced phosphorescence.Chem Commun2009;1243-5

[32]

Hong Y,Tang BZ.Aggregation-induced emission: phenomenon, mechanism and applications.Chem Commun2009;:4332-53

[33]

Martinić I,Nguyen TN,Petoud S.Near-infrared optical imaging of necrotic cells by photostable lanthanide-based metallacrowns.J Am Chem Soc2017;139:8388-91

[34]

Zhuo H,He JC,Zeng MH.Stepwise increase of NdIII -based phosphorescence by AIE-active sensitizer: broadening the AIPE family from transition metals to discrete near-infrared lanthanide complexes**.Chemistry2021;27:16204-11

[35]

Tinnefeld P.Single-molecule detection: Breaking the concentration barrier.Nat Nanotechnol2013;8:480-2

[36]

Zhang Y,Xu HB.Switchable sensitizers stepwise lighting up lanthanide emissions.Sci Rep2015;5:9335 PMCID:PMC4366845

[37]

Alric C,Le Duc G.Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging.J Am Chem Soc2008;130:5908-15

[38]

Lewis DJ,Solomons MC.Purely heterometallic lanthanide(III) macrocycles through controlled assembly of disulfide bonds for dual color emission.J Am Chem Soc2011;133:1033-43

[39]

Xu HB,Zhang LY.Structural and photophysical studies on geometric (Er2Yb2/Yb2Er2) and configurational (EuTb3/Eu3Tb) isomers of heterotetranuclear lanthanide(III) complexes.Cryst Growth Des2013;13:849-57

[40]

Knighton RC,Lecointre A.Upconversion in molecular hetero-nonanuclear lanthanide complexes in solution.Chem Commun2021;57:53-6

[41]

Golesorkhi B,Nozary H.Deciphering and quantifying linear light upconversion in molecular erbium complexes.Chem Sci2019;10:6876-85 PMCID:PMC6640199

[42]

Kalmbach J,You Y.NIR-NIR-Aufkonvertierung in molekularen Chrom-Ytterbium-Salzen.Angew Chem Int Ed2020;132:18966-70

[43]

Mo JT,Fu PY.Highly efficient DCL, UCL, and TPEF in hybridized Ln-complexes from Ir-metalloligand.CCS Chem2021;3:729-38

[44]

Aboshyan-Sorgho L,Pattison P.Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex.Angew Chem Int Ed Engl2011;50:4108-12

[45]

Wang J,Liu JY.Discrete heteropolynuclear Yb/Er assemblies: switching on molecular upconversion under mild conditions.Angew Chem Int Ed Engl2021;60:22368-75

[46]

Xu HB,Zhang WX,Chen XM.Syntheses, structures and photophysical properties of heterotrinuclear Zn2Ln clusters (Ln = Nd, Eu, Tb, Er, Yb).Dalton Trans2010;39:5676-82

[47]

Wang J.Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor.Science2011;331:1429-32

[48]

Pooler DRS,Crespi S.Designing light-driven rotary molecular motors.Chem Sci2021;12:14964-86 PMCID:PMC8612399

[49]

Kassem S,Lubbe AS,Feringa BL.Artificial molecular motors.Chem Soc Rev2017;46:2592-621

[50]

Wezenberg SJ,Feringa BL.Visible-light-driven photoisomerization and increased rotation speed of a molecular motor acting as a ligand in a ruthenium(II) complex.Angew Chem Int Ed Engl2015;54:11457-61

[51]

Faulkner A,Feringa BL.Allosteric regulation of the rotational speed in a light-driven molecular motor.J Am Chem Soc2016;138:13597-603 PMCID:PMC5073371

[52]

Cnossen A,Pollard MM,Browne WR.Driving unidirectional molecular rotary motors with visible light by intra- and intermolecular energy transfer from palladium porphyrin.J Am Chem Soc2012;134:17613-9

[53]

Li S,Li Q,Zhang X.Lanthanide-functionalized water-soluble ionic motors: synergetically regulated rotary motion by allostery and triplet sensitization.Adv Opt Mater2023;11:2300179

[54]

Iino R,Bryant Z.Introduction: molecular motors.Chem Rev2020;120:1-4

[55]

Eliseeva SV.Lanthanide luminescence for functional materials and bio-sciences.Chem Soc Rev2010;39:189-227

[56]

Lubbe AS,Smits EJ.Solvent effects on the thermal isomerization of a rotary molecular motor.Phys Chem Chem Phys2016;18:26725-35

[57]

Wiedbrauk S,Samoylova E.Twisted hemithioindigo photoswitches: solvent polarity determines the type of light-induced rotations.J Am Chem Soc2016;138:12219-27

[58]

Dasari S,Sivakumar S.Dual-sensitized luminescent europium(ΙΙΙ) and terbium(ΙΙΙ) complexes as bioimaging and light-responsive therapeutic agents.Chemistry2016;22:17387-96

[59]

Weng H.A flexible Tb(III) functionalized cadmium metal organic framework as fluorescent probe for highly selectively sensing ions and organic small molecules.Sens Actuators B Chem2016;228:702-8

[60]

Wang X,Tissot A.Luminescent sensing platforms based on lanthanide metal-organic frameworks: current strategies and perspectives.Coord Chem Rev2023;497:215454

[61]

Lin M,Hornicek F.Near-infrared light activated delivery platform for cancer therapy.Adv Colloid Interface Sci2015;226:123-37 PMCID:PMC4679704

[62]

Liu Y,Xu C.Controlled synthesis of up-conversion luminescent Gd/Tm-MOFs for pH-responsive drug delivery and UCL/MRI dual-modal imaging.Dalton Trans2018;47:11253-63

[63]

Kenney JW.Photoluminescent metal complexes and materials as temperature sensors - an introductory review.Chemosensors2021;9:109

[64]

Brites CDS,Carlos LD.Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry.Adv Opt Mater2019;7:1801239

[65]

Marin R,Kelly L.Luminescence thermometry using sprayed films of metal complexes.J Mater Chem C2022;10:1767-75

[66]

Vanden Bussche F, Kaczmarek AM, Van Speybroeck V, Van Der Voort P, Stevens CV. Overview of N-rich antennae investigated in lanthanide-based temperature sensing.Chemistry2021;27:7214-30

[67]

Zairov RR,Podyachev SN.Role of PSS-based assemblies in stabilization of Eu and Sm luminescent complexes and their thermoresponsive luminescence.Colloids Surf B Biointerfaces2022;217:112664

[68]

Peng XX,Zhang JL.Near infrared (NIR) imaging: exploring biologically relevant chemical space for lanthanide complexes.J Inorg Biochem2020;209:111118

[69]

Zairov RR,Sapunova AS.Dual red-NIR luminescent Eu-Yb heterolanthanide nanoparticles as promising basis for cellular imaging and sensing.Mater Sci Eng C Mater Biol Appl2019;105:110057

[70]

Ning Y,Liu YW,Sun Y.Highly luminescent, biocompatible ytterbium(iii) complexes as near-infrared fluorophores for living cell imaging.Chem Sci2018;9:3742-53 PMCID:PMC5939605

[71]

Hamon N,Roux M,Tripier R.Design of bifunctional pyclen-based lanthanide luminescent bioprobes for targeted two-photon imaging.J Org Chem2023;88:8286-99

[72]

Wang L,Wei C.Review on the electroluminescence study of lanthanide complexes.Adv Opt Mater2019;7:1801256

[73]

Zhan G,Zhao Z,Bian Z.Highly efficient and air-stable lanthanide EuII complex: new emitter in organic light emitting diodes.Angew Chem Int Ed Engl2020;59:19011-5

[74]

Fang P,Zhan G.Lanthanide cerium(III) tris(pyrazolyl)borate complexes: efficient blue emitters for doublet organic light-emitting diodes.ACS Appl Mater Interfaces2021;13:45686-95

[75]

Zairov RR,Sapunova AS.Terbium(III)-thiacalix[4]arene nanosensor for highly sensitive intracellular monitoring of temperature changes within the 303-313 K range.Sci Rep2020;10:20541 PMCID:PMC7689473

[76]

Wang Y,He X.Application in anticounterfeiting for multistimuli smart luminescent materials based on MOF-on-MOF.Inorg Chem2021;60:15001-9

[77]

Guo WJ,Zhu W.Visualization of supramolecular assembly by aggregation-induced emission.Aggregate2023;4:e297

[78]

Zheng B,Chen B.Rare-earth doping in nanostructured inorganic materials.Chem Rev2022;122:5519-603

[79]

Bolvin H,Golesorkhi B,Taarit I.Metal-based linear light upconversion implemented in molecular complexes: challenges and perspectives.Acc Chem Res2022;55:442-56

[80]

Huang Q,She S,Hou C.Lanthanide composite as doping reagent simplifies and uniformizes deposition of fiber preforms.Cell Rep Phys Sci2023;4:101716

AI Summary AI Mindmap
PDF

66

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/