Strain engineering of two-dimensional materials for energy storage and conversion applications

Xing Peng , Long Chen , Yifan Liu , Chao Liu , Honglan Huang , Jinbo Fan , Pan Xiong , Junwu Zhu

Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (4) : 47

PDF
Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (4) :47 DOI: 10.20517/cs.2023.34
review-article

Strain engineering of two-dimensional materials for energy storage and conversion applications

Author information +
History +
PDF

Abstract

Two-dimensional (2D) materials have garnered much interest due to their exceptional optical, electrical, and mechanical properties. Strain engineering, as a crucial approach to modulate the physicochemical characteristics of 2D materials, has been widely used in various fields, especially for energy storage and conversion. Herein, the recent progress in strain engineering of 2D materials is summarized for energy storage and conversion applications. The fundamental understanding of strain in 2D materials is first described. Then, some synthetic methods for modulating the properties of 2D materials via strain engineering are introduced. Further, the applications of strain engineering of 2D materials in energy storage, photocatalysis, and electrocatalysis are discussed. Finally, the challenges and perspectives on strain engineering of 2D materials are also outlined.

Keywords

Two-dimensional materials / strain engineering / energy storage and conversion / electrocatalysis / photocatalysis

Cite this article

Download citation ▾
Xing Peng, Long Chen, Yifan Liu, Chao Liu, Honglan Huang, Jinbo Fan, Pan Xiong, Junwu Zhu. Strain engineering of two-dimensional materials for energy storage and conversion applications. Chemical Synthesis, 2023, 3(4): 47 DOI:10.20517/cs.2023.34

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Novoselov KS,Morozov SV.Electric field effect in atomically thin carbon films.Science2004;306:666-9

[2]

Plechinger G,Buscema M.Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate.2D Mater2015;2:015006

[3]

Wang L,Tahir M,Sambur JB.Influence of the substrate on the optical and photo-electrochemical properties of monolayer MoS2.ACS Appl Mater Interfaces2020;12:15034-42

[4]

Jiang S,Shan J.Exchange magnetostriction in two-dimensional antiferromagnets.Nat Mater2020;19:1295-9

[5]

Radisavljevic B,Brivio J,Kis A.Single-layer MoS2 transistors.Nat Nanotechnol2011;6:147-50

[6]

Yu H,Zhang T,Shen Y.Is the strain responsible to instability of inorganic perovskites and their photovoltaic devices?.Mater Today Energy2021;19:100601

[7]

Chen W,Sun Y,Fan Y.Preparation, properties, and electronic applications of 2D Bi2O2Se.Adv Powder Mater2023;2:100080

[8]

Yin Y,Han B.Two-dimensional materials: synthesis and applications in the electro-reduction of carbon dioxide.Chem Synth2022;2:19

[9]

Chen L,Dang W,Liu G.Tantalum oxide nanosheets/polypropylene composite separator constructing lithium-ion channels for stable lithium metal batteries.Adv Compos Hybrid Mater2023;6:12

[10]

Liu C,Wu Y.Atomic-scale engineering of cation vacancies in two-dimensional unilamellar metal oxide nanosheets for electricity generation from water evaporation.Nano Energy2023;110:108348

[11]

Phalswal P,Rubahn HG.Nanostructured molybdenum dichalcogenides: a review.Mater Adv2022;3:5672-97

[12]

Zhang K,Wang J.Manganese doping of monolayer MoS2: the substrate is critical.Nano Lett2015;15:6586-91

[13]

Jin Y,Xu Z.Synthesis and transport properties of degenerate P-type Nb-doped WS2 monolayers.Chem Mater2019;31:3534-41

[14]

Li H,Mleczko MJ.Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy.J Am Chem Soc2016;138:5123-9

[15]

Liu C,Ma R.Atomic cation-vacancy engineering of two-dimensional nanosheets for energy-related applications.Mater Chem Front2023;7:1004-24

[16]

Shao G,Hong J.Seamlessly splicing metallic SnxMo1-xS2 at MoS2 edge for enhanced photoelectrocatalytic performance in microreactor.Adv Sci2020;7:2002172 PMCID:PMC7739950

[17]

Yang S,Wu C.Tuning surface properties of low dimensional materials via strain engineering.Small2016;12:4028-47

[18]

Zheng SW,Wang L,Gao BR.Observation of robust charge transfer under strain engineering in two-dimensional MoS2-WSe2 heterostructures.Nanoscale2021;13:14081-8

[19]

Miao Y,Zhang S,Zhang T.Strain engineering: a boosting strategy for photocatalysis.Adv Mater2022;34:2200868

[20]

Shaikh JS,Sabale S.A phosphorus integrated strategy for supercapacitor: 2D black phosphorus-doped and phosphorus-doped materials.Mater Today Chem2021;21:100480

[21]

Yan Y,Wu X.Tuning the physical properties of ultrathin transition-metal dichalcogenides via strain engineering.RSC Adv2020;10:39455-67 PMCID:PMC9057462

[22]

Li H,Zhou L.Strain-tuning atomic substitution in two-dimensional atomic crystals.ACS Nano2018;12:4853-60

[23]

Bonavolontà C,Valentino M.Graphene-polymer coating for the realization of strain sensors.Beilstein J Nanotechnol2017;8:21-7 PMCID:PMC5238689

[24]

Chaste J,Huang S.Intrinsic properties of suspended MoS2 on SiO2/Si pillar arrays for nanomechanics and optics.ACS Nano2018;12:3235-42

[25]

Wu Y,Li H,Liu S.Strain of 2D materials via substrate engineering.Chin Chem Lett2022;33:153-62

[26]

Akinwande D,Bunch JS.A review on mechanics and mechanical properties of 2D materials - Graphene and beyond.Extreme Mech Lett2017;13:42-77

[27]

Yang S,Jiang C.Strain engineering of two-dimensional materials: methods, properties, and applications.InfoMat2021;3:397-420

[28]

Hammer B.Theoretical surface science and catalysis - calculations and concepts.Adv Catal2000;45:71-129

[29]

Deng S,Berry V.Strain engineering in two-dimensional nanomaterials beyond graphene.Nano Today2018;22:14-35

[30]

Zhou K,Liu C.Flexible conductive polymer composites for smart wearable strain sensors.SmartMat2020;1:e1010

[31]

Zhang H,Xu S.Approaching the ideal elastic strain limit in silicon nanowires.Sci Adv2016;2:e1501382 PMCID:PMC4988777

[32]

Mohiuddin TMG,Nair RR.Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation.Phys Rev B2009;79:205433

[33]

Lu J,Nunes RW,Loh KP.Lattice relaxation at the interface of two-dimensional crystals: graphene and hexagonal boron-nitride.Nano Lett2014;14:5133-9

[34]

Li H,Qian X.Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide.Nat Commun2015;6:7381 PMCID:PMC4557352

[35]

Azcatl A,Prakash A.Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure.Nano Lett2016;16:5437-43

[36]

Pierucci D,Ben Aziza Z.Tunable doping in hydrogenated single layered molybdenum disulfide.ACS Nano2017;11:1755-61

[37]

Hsu WT,Wang D.Evidence of indirect gap in monolayer WSe2.Nat Commun2017;8:929 PMCID:PMC5640683

[38]

Yang J,Lagos MJ.Single atomic vacancy catalysis.ACS Nano2019;13:9958-64

[39]

Li Z,Ren L.Efficient strain modulation of 2D materials via polymer encapsulation.Nat Commun2020;11:1151 PMCID:PMC7052151

[40]

Lee CH,Luo D.Deep learning enabled strain mapping of single-atom defects in two-dimensional transition metal dichalcogenides with sub-picometer precision.Nano Lett2020;20:3369-77

[41]

Li L,Mahapatra S.Angstrom-scale spectroscopic visualization of interfacial interactions in an organic/borophene vertical heterostructure.J Am Chem Soc2021;143:15624-34

[42]

Wu G,Cai J.In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity.Nat Commun2022;13:4200 PMCID:PMC9300738

[43]

Cao X,Liang C.Engineering lattice disorder on a photocatalyst: photochromic BiOBr nanosheets enhance activation of aromatic C-H bonds via water oxidation.J Am Chem Soc2022;144:3386-97

[44]

Bhatt MD.Effect of lattice strain on nanomaterials in energy applications: a perspective on experiment and theory.Int J Hydrog Energy2017;42:16064-107

[45]

Sharma SK,Gaur A.Progress in electrode and electrolyte materials: path to all-solid-state Li-ion batteries.Energy Adv2022;1:457-510

[46]

Xu X,Kong D,Zhi L.Strain engineering of two-dimensional materials for advanced electrocatalysts.Mater Today Nano2021;14:100111

[47]

Khorshidi A,Hashemi J.How strain can break the scaling relations of catalysis.Nat Catal2018;1:263-8

[48]

Deeksha ,Ahmed I.Transition metal-based perovskite oxides: emerging electrocatalysts for oxygen evolution reaction.ChemCatChem2023;15:e202300040

[49]

Dalrymple OK,Trotz MA.A review of the mechanisms and modeling of photocatalytic disinfection.Appl Catal B Environ2010;98:27-38

[50]

Jiang J,Zhang L.Strain related new sciences and devices in low-dimensional binary oxides.Nano Energy2022;104:107917

[51]

Xu Y.The supramolecular chemistry of strained carbon nanohoops.Angew Chem Int Ed Engl2020;59:559-73

[52]

Lloyd D,Christopher JW.Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2.Nano Lett2016;16:5836-41

[53]

Liu B,Zhang X.Strain-engineered van der waals interfaces of mixed-dimensional heterostructure arrays.ACS Nano2019;13:9057-66

[54]

Conley HJ,Ziegler JI,Pantelides ST.Bandgap engineering of strained monolayer and bilayer MoS2.Nano Lett2013;13:3626-30

[55]

Di J,Zhu C.Strain-engineering of Bi12 O17 Br2 nanotubes for boosting photocatalytic CO2 reduction.ACS Mater Lett2020;2:1025-32

[56]

Feng H,Wang L.Modulation of photocatalytic properties by strain in 2D BiOBr nanosheets.ACS Appl Mater Interfaces2015;7:27592-6

[57]

Franchini IR,Falqui A,Wang LW.Colloidal PbTe-aunanocrystal heterostructures.J Mater Chem2010;20:1357-66

[58]

Zhang P,Li M.Transition-metal substitution-induced lattice strain and electrical polarity reversal in monolayer WS2.ACS Appl Mater Interfaces2020;12:18650-9

[59]

Castellanos-Gomez A,Cappelluti E.Local strain engineering in atomically thin MoS2.Nano Lett2013;13:5361-6

[60]

Ni W,Schouwink PA,Chen HM.Efficient hydrogen oxidation catalyzed by strain-engineered nickel nanoparticles.Angew Chem Int Ed Engl2020;59:10797-801

[61]

Chattot R,Beermann V.Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis.Nat Mater2018;17:827-33 PMCID:PMC6109589

[62]

Liu Y,Zhong J,Wang ZM.Spintronics in two-dimensional materials.Nanomicro Lett2020;12:93 PMCID:PMC7770708

[63]

Bai S,Gao C.Defect engineering in photocatalytic materials.Nano Energy2018;53:296-336

[64]

Wang S,Xie L.Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction.Nano Res2022;15:4996-5003

[65]

Mao Q,Wang W.N-doping induced lattice-strained porous PdIr bimetallene for pH-universal hydrogen evolution electrocatalysis.J Mater Chem A2022;10:8364-70

[66]

Zhu Y,Sun F.Controllable Growth of Ultrathin P-doped ZnO Nanosheets.Nanoscale Res Lett2016;11:175 PMCID:PMC4816943

[67]

Liang S,Ou X.Lattice-strained nickel hydroxide nanosheets for the boosted diluted CO2 photoreduction.Environ Sci Nano2021;8:2360-71

[68]

Zhao Y,Waterhouse GIN.Photocatalysts: layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation (Adv. Mater. 42/2017).Adv Mater2017;29:1703828

[69]

Zhang W,Cao S.Electrode materials: interfacial lattice-strain-driven generation of oxygen vacancies in an aerobic-annealed TiO2(B) electrode (Adv. Mater. 52/2019).Adv Mater2019;31:1970367

[70]

Choi SY,Choi M.Assessment of strain-generated oxygen vacancies using SrTiO3 bicrystals.Nano Lett2015;15:4129-34

[71]

Li H,Koh AL.Correction: corrigendum: activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies.Nat Mater2016;15:364

[72]

Zhao Y,Shi R.Tuning oxygen vacancies in ultrathin TiO2 Nanosheets to boost photocatalytic nitrogen fixation up to 700 nm.Adv Mater2019;31:1806482

[73]

Jeong HY,Yun SJ.Heterogeneous defect domains in single-crystalline hexagonal WS2.Adv Mater2017;29:1605043

[74]

Luo M.Strain-controlled electrocatalysis on multimetallic nanomaterials.Nat Rev Mater2017;2:17059

[75]

Lemme MC,Huyghebaert C.2D materials for future heterogeneous electronics.Nat Commun2022;13:1392 PMCID:PMC8927416

[76]

Li MY,Cheng CC.Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface.Science2015;349:524-8

[77]

Xie S,Han Y.Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain.Science2018;359:1131-6

[78]

Zhu Z,Persson AR,Gromov AV.Compressively-strained GaSb nanowires with core-shell heterostructures.Nano Res2020;13:2517-24

[79]

Zhang C,Tersoff J.Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions.Nat Nanotechnol2018;13:152-8

[80]

Xiong P,Zhang X.Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries.Nat Commun2020;11:3297 PMCID:PMC7335097

[81]

Zhang Z,Duan X,Luo J.Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices.Science2017;357:788-92

[82]

He K,Mak KF.Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2.Nano Lett2013;13:2931-6

[83]

Ni ZH,Lu YH,Feng YP.Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening.ACS Nano2008;2:2301-5

[84]

Zhang Q,Xu G.Strain relaxation of monolayer WS2 on plastic substrate.Adv Funct Mater2016;26:8707-14

[85]

Huang M,Chen C,Heinz TF.Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy.Proc Natl Acad Sci U S A2009;106:7304-8 PMCID:PMC2678610

[86]

Hui YY,Jie W.Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet.ACS Nano2013;7:7126-31

[87]

Zeng M,Zhou L.Bandgap tuning of two-dimensional materials by sphere diameter engineering.Nat Mater2020;19:528-33

[88]

Zong Z,Dokmeci MR.Direct measurement of graphene adhesion on silicon surface by intercalation of nanoparticles.J Appl Phys2010;107:026104

[89]

Lee JK,Yun H.Modification of electrical properties of graphene by substrate-induced nanomodulation.Nano Lett2013;13:3494-500

[90]

Zhang Y,Janicek B.Strain modulation of graphene by nanoscale substrate curvatures: a molecular view.Nano Lett2018;18:2098-104

[91]

Reserbat-Plantey A,Han Z.Strain superlattices and macroscale suspension of graphene induced by corrugated substrates.Nano Lett2014;14:5044-51

[92]

Lloyd D,Boddeti N.Adhesion, stiffness, and instability in atomically thin MoS2 bubbles.Nano Lett2017;17:5329-34

[93]

Tomori H,Goto H.Introducing nonuniform strain to graphene using dielectric nanopillars.Appl Phys Express2011;4:075102

[94]

Cai W,He Y.Strain-modulated photoelectric responses from a flexible α-In2Se3/3R MoS2 heterojunction.Nanomicro Lett2021;13:74 PMCID:PMC8128968

[95]

Liu Z,Wang J.Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics.Nanomicro Lett2022;14:61 PMCID:PMC8844338

[96]

Zhang CY,Pan JL.Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium-sulfur batteries.eScience2022;2:405-15

[97]

Liu Z,Chen Z.Recent advances in two-dimensional materials for hydrovoltaic energy technology.Exploration2023;3:20220061 PMCID:PMC10191061

[98]

Xiong P,Zhang X.Atomic-scale regulation of anionic and cationic migration in alkali metal batteries.Nat Commun2021;12:4184 PMCID:PMC8263716

[99]

Xiong P,Liu Y.Two-dimensional organic-inorganic superlattice-like heterostructures for energy storage applications.Energy Environ Sci2020;13:4834-53

[100]

Jiang K,Ji J.Two-dimensional molecular sheets of transition metal oxides toward wearable energy storage.Acc Chem Res2020;53:2443-55

[101]

Dai Z,Zhang Z.2D materials: strain engineering of 2D materials: issues and opportunities at the interface (Adv. Mater. 45/2019).Adv Mater2019;31:1970322

[102]

Ma Y,Wang L.Design of strain-limiting substrate materials for stretchable and flexible electronics.Adv Funct Mater2016;26:5345-51 PMCID:PMC5639729

[103]

Li F,Wang C,Qi J.Recent advances in strain-induced piezoelectric and piezoresistive effect-engineered 2D semiconductors for adaptive electronics and optoelectronics.Nanomicro Lett2020;12:106 PMCID:PMC7770727

[104]

Xiong P,Wang G.Progress and perspective on two-dimensional unilamellar metal oxide nanosheets and tailored nanostructures from them for electrochemical energy storage.Energy Storage Mater2019;19:281-98

[105]

Hao J,Ling F.Strain-engineered two-dimensional MoS2 as anode material for performance enhancement of Li/Na-ion batteries.Sci Rep2018;8:2079 PMCID:PMC5794781

[106]

Oakes L,Hanken T.Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity.Nat Commun2016;7:11796 PMCID:PMC4895792

[107]

Ma M,Wang L.Harnessing the volume expansion of MoS3 anode by structure engineering to achieve high performance beyond lithium-based rechargeable batteries.Adv Mater2021;33:2106232

[108]

Liu Y,Yan X.Interface-strain-confined synthesis of amorphous TiO2 mesoporous nanosheets with stable pseudocapacitive lithium storage.Chem Eng J2021;420:129894

[109]

Liu MC,Zhang YS.Regulating interlayer spacing with pillar and strain structures in Ti3C2 MXene layers by molecular welding for superior alkali metal ion storage.Mater Today Energy2021;22:100832

[110]

Chen S,Zhang H.Surface electrochemical stability and strain-tunable lithium storage of highly flexible 2D transition metal carbides.Adv Funct Mater2018;28:1804867

[111]

Duan H,Yu R.Ultrathin rhodium nanosheets.Nat Commun2014;5:3093

[112]

Sun Y,Gao S.Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation.Nat Commun2013;4:2899

[113]

Bahadoran A,Masudy-panah S.Rational construction of a 0D/1D S-scheme CeO2/CdWO4 heterojunction for photocatalytic CO2 reduction and H2 production.Ind Eng Chem Res2022;61:10931-44

[114]

Bhawna ,Sharma R.Catalytic heterostructured materials for CO2 mitigation and conversion into fuels: a renewable energy approach towards a sustainable environment.Sustain Energy Fuels2023;7:4354-95

[115]

Liu G,Kang Y,Cheng HM.Unique physicochemical properties of two-dimensional light absorbers facilitating photocatalysis.Chem Soc Rev2018;47:6410-44

[116]

Biele R,Ares JR.Strain-induced band gap engineering in layered TiS3.Nano Res2018;11:225-32

[117]

Feng J,Huang CW.Strain-engineered artificial atom as a broad-spectrum solar energy funnel.Nature Photon2012;6:866-72

[118]

Pak S,Lee YW.Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer.Nano Lett2017;17:5634-40 PMCID:PMC5959243

[119]

Wang SL,Zhou X.Fabrication and properties of a free-standing two-dimensional titania.J Am Chem Soc2017;139:15414-9

[120]

Tao J,Xu M,Ge J.Non-noble metals as activity sites for ORR catalysts in proton exchange membrane fuel cells (PEMFCs).Ind Chem Mater2023;1:388-409

[121]

Mirshokraee SA,Orsilli J.Mono-, bi- and tri-metallic platinum group metal-free electrocatalysts for hydrogen evolution reaction following a facile synthetic route.Ind Chem Mater2023;1:343-59

[122]

Wang H,Luo Q.Two-dimensional manganese oxide on ceria for the catalytic partial oxidation of hydrocarbons.Chem Synth2022;2:2

[123]

He Y,Li J,Tian X.Recent progress of manganese dioxide based electrocatalysts for the oxygen evolution reaction.Ind Chem Mater2023;1:312-31

[124]

Chang CC,Hung WH,Pimenta MA.Strain-induced D band observed in carbon nanotubes.Nano Res2012;5:854-62

[125]

Qian X,Li J.Topological crystalline insulator nanomembrane with strain-tunable band gap.Nano Res2015;8:967-79

[126]

Qiu Y,Zheng Y,Zhang W.Activating ruthenium dioxide via compressive strain achieving efficient multifunctional electrocatalysis for Zn-air batteries and overall water splitting.InfoMat2022;4:e12326

[127]

Zhao W,Höfert O.Graphene on Ni(111): coexistence of different surface structures.J Phys Chem Lett2011;2:759-64

[128]

You B,Tsai C,Zheng X.Enhancing electrocatalytic water splitting by strain engineering.Adv Mater2019;31:1807001

[129]

Mao X,Ge S,Zhang B.Strain engineering of electrocatalysts for hydrogen evolution reaction.Mater Horiz2023;10:340-60

[130]

Voiry D,Li J.Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution.Nat Mater2013;12:850-5

[131]

Hwang DY,Park JE.Highly efficient hydrogen evolution reaction by strain and phase engineering in composites of Pt and MoS2 nano-scrolls.Phys Chem Chem Phys2017;19:18356-65

[132]

Tan Y,Chen L.Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production.Adv Mater2014;26:8023-8

[133]

Lee JH,Han SW.Efficient hydrogen evolution by mechanically strained MoS2 nanosheets.Langmuir2014;30:9866-73

[134]

Zhu H,Du M.Electrocatalytic nanomaterials: atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis (Adv. Mater. 26/2018).Adv Mater2018;30:1870191

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/