Recent progress of enhanced bubble separation in alkaline water electrolyzer

Lin Yang , Lingyu Gao , Guixuan Shan , Xinyi Huo , Mengfei Zhang , Yuxuan Wang , Xingyu Liu , Aiqun Kong , Jiangjiexing Wu , Jinli Zhang

Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (4) : 41

PDF
Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (4) :41 DOI: 10.20517/cs.2023.25
review-article

Recent progress of enhanced bubble separation in alkaline water electrolyzer

Author information +
History +
PDF

Abstract

Alkaline water electrolysis has a large industrial application and development potential in hydrogen energy owing to its high maturity and low cost. However, its moderate energy efficiency, especially caused by bubble effects, inhibits its use for large-scale hydrogen production. To overcome this shortcoming, this review first analyzes the bubble effect and summarizes the external operation methods, such as external field intensification, flow operation, fluctuation operation, and surfactant addition to the electrolyte, to enhance bubble separation in the electrolyzer. Then, electrode and flow channel structure optimization, particularly superhydrophilic and superaerophobic electrodes, and flow channels with varying heights, square column arrangements, and inlet/outlet numbers are highlighted. Finally, future research directions in alkaline water electrolysis technology are suggested to advance the industrial application of large-scale alkaline water electrolysis.

Keywords

Alkaline water electrolyzer / bubble effect / external operation optimization / superhydrophilic and superaerophobic electrode / bipolar plates flow channel

Cite this article

Download citation ▾
Lin Yang, Lingyu Gao, Guixuan Shan, Xinyi Huo, Mengfei Zhang, Yuxuan Wang, Xingyu Liu, Aiqun Kong, Jiangjiexing Wu, Jinli Zhang. Recent progress of enhanced bubble separation in alkaline water electrolyzer. Chemical Synthesis, 2023, 3(4): 41 DOI:10.20517/cs.2023.25

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Holladay J,King D.An overview of hydrogen production technologies.Catal Today2009;139:244-60

[2]

Turner JA.Sustainable hydrogen production.Science2004;305:972-4

[3]

Buttler A.Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review.Renew Sust Energy Rev2018;82:2440-54

[4]

Xie WF.Alkaline water electrolysis for efficient hydrogen production.J Electrochem2022;28:22014008

[5]

Schmidt O,Staffell I,Nelson J.Future cost and performance of water electrolysis: an expert elicitation study.Int J Hydrog Energy2017;42:30470-92

[6]

Yu ZY,Feng XY,Gao MR.Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects.Adv Mater2021;33:e2007100

[7]

Zouhri K.Evaluation and optimization of the alkaline water electrolysis ohmic polarization: exergy study.Int J Hydrog Energy2016;41:7253-63

[8]

Zeng K.Recent progress in alkaline water electrolysis for hydrogen production and applications.Prog Energy Combust Sci2010;36:307-26

[9]

Wang M,Gong X.The intensification technologies to water electrolysis for hydrogen production - a review.Renew Sust Energy Rev2014;29:573-88

[10]

Yin W,Xie L.Revisited electrochemical gas evolution reactions from the perspective of gas bubbles.Nano Res2023;16:4381-98

[11]

Zhao X,Luo L.Gas Bubbles in electrochemical gas evolution reactions.Langmuir2019;35:5392-408

[12]

Angulo A,Gardeniers H,Fernández Rivas D.Influence of bubbles on the energy conversion efficiency of electrochemical reactors.Joule2020;4:555-79

[13]

Deng X,Li Y,Ouyang M.Quantitative study on gas evolution effects under large current density in zero-gap alkaline water electrolyzers.J Power Sources2023;555:232378

[14]

Lu Z,Lei X,Sun X.Nanoarray based “superaerophobic” surfaces for gas evolution reaction electrodes.Mater Horiz2015;2:294-8

[15]

Weijs MPMG,Visser GJ.Ohmic resistance of solution in a vertical gas-evolving cell.J Appl Electrochem1997;27:371-8

[16]

Xie Y,Ying PJ,Sun K.Intensified field-effect of hydrogen evolution reaction.Prog Chem2021;33:1571-85

[17]

Weier T,Massing J,Cierpka C.The effect of a lorentz-force-driven rotating flow on the detachment of gas bubbles from the electrode surface.Int J Hydrog Energy2017;42:20923-33

[18]

Martin M.Bi’äñki’s ghost dance map: thanatoptic cartography and the native american spirit world.Imago Mundi2013;65:106-14

[19]

Liu Y,Liu H,Yin S.Effects of magnetic field on water electrolysis using foam electrodes.Int J Hydrog Energy2019;44:1352-8

[20]

Niether C,Bordet A.Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles.Nat Energy2018;3:476-83

[21]

Garcés-pineda FA,Nieto-castro D,Galán-mascarós JR.Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media.Nat Energy2019;4:519-25

[22]

Wang M,Guo Z.Understanding of the intensified effect of super gravity on hydrogen evolution reaction.Int J Hydrog Energy2009;34:5311-7

[23]

Wang M,Guo Z.Water electrolysis enhanced by super gravity field for hydrogen production.Int J Hydrog Energy2010;35:3198-205

[24]

Rashwan SS,Mohany A.A review on the importance of operating conditions and process parameters in sonic hydrogen production.Int J Hydrog Energy2021;46:28418-34

[25]

Cho KM,Shin WG.Hydrodynamic behavior of bubbles at gas-evolving electrode in ultrasonic field during water electrolysis.Ultrason Sonochem2021;80:105796 PMCID:PMC8529173

[26]

Li S,Chen C.Water electrolysis in the presence of an ultrasonic field.Electrochim Acta2009;54:3877-83

[27]

Madigan NA,Zhang H.Effects of sonication on electrode surfaces and metal particles.Ultrason Sonochem1996;3:S239-47

[28]

Swiegers GF,Tsekouras G,Pace RJ.The prospects of developing a highly energy-efficient water electrolyser by eliminating or mitigating bubble effects.Sustain Energy Fuels2021;5:1280-310

[29]

Sullivan I,Zhu C.3D printed nickel-molybdenum-based electrocatalysts for hydrogen evolution at low overpotentials in a flow-through configuration.ACS Appl Mater Interfaces2021;13:20260-8

[30]

Chen Y,Bai K,Fan S.A flow-through electrode for hydrogen production from water splitting by mitigating bubble induced overpotential.J Power Sources2023;561:232733

[31]

Bakker MM.Gas bubble removal in alkaline water electrolysis with utilization of pressure swings.Electrochim Acta2019;319:148-57

[32]

Monk N.Review of pulsed power for efficient hydrogen production.Int J Hydrog Energy2016;41:7782-91

[33]

Demir N,Albawabiji MS.Effect of pulse potential on alkaline water electrolysis performance.Int J Hydrog Energy2018;43:17013-20

[34]

Hosseini SR,Ghasemi SA.Effect of surfactants on electrocatalytic performance of copper nanoparticles for hydrogen evolution reaction.J Mol Liq2016;222:1068-75

[35]

Wei Z,Chen S.Water electrolysis on carbon electrodes enhanced by surfactant.Electrochim Acta2007;52:3323-9

[36]

Brinkert K,Akay Ö.Efficient solar hydrogen generation in microgravity environment.Nat Commun2018;9:2527 PMCID:PMC6039473

[37]

Browne MP,Coelho J.Improving the performance of porous nickel foam for water oxidation using hydrothermally prepared Ni and Fe metal oxides.Sustain Energy Fuels2017;1:207-16

[38]

Li S,Song Y.Integrated CoPt electrocatalyst combined with upgrading anodic reaction to boost hydrogen evolution reaction.Chem Eng J2022;437:135473

[39]

Wang C,Wang Y,Zhou J.Recent advances in nonmetallic modulation of palladium-based electrocatalysts.Chem Synth2023;3:8

[40]

Cong Y,Gao X.Uniform Pd0.33Ir0.67 nanoparticles supported on nitrogen-doped carbon with remarkable activity toward the alkaline hydrogen oxidation reaction.J Mater Chem A2019;7:3161-9

[41]

Wang X,Liu CP,Zhu JB.Recent advances in structural regulation on non-precious metal catalysts for oxygen reduction reaction in alkaline electrolytes.J Electrochem2022;28:2108501

[42]

Yang F,Brown M.Alkaline Water Electrolysis at 25 A cm-2 with a microfibrous flow-through electrode.Adv Energ Mater2020;10:2001174

[43]

Schalenbach M,Mayrhofer KJ.An alkaline water electrolyzer with nickel electrodes enables efficient high current density operation.Int J Hydrog Energy2018;43:11932-8

[44]

Phillips R,Rome B,Dunnill CW.Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design.Int J Hydrog Energy2017;42:23986-94

[45]

Alexiadis A,Ramachandran P,Wanngård J.Liquid-gas flow patterns in a narrow electrochemical channel.Chem Eng Sci2011;66:2252-60

[46]

de Groot MT, Vreman AW. Ohmic resistance in zero gap alkaline electrolysis with a Zirfon diaphragm.Electrochim Acta2021;369:137684

[47]

Kim J,Yoo C,Lee W.Low-cost and energy-efficient asymmetric nickel electrode for alkaline water electrolysis.Int J Hydrog Energy2015;40:10720-5

[48]

Paul MT,Bruce DR.Hexagonal arrays of cylindrical nickel microstructures for improved oxygen evolution reaction.ACS Appl Mater Interfaces2017;9:7036-43

[49]

Fujimura T,Fukunaka Y.Analysis of the hydrogen evolution reaction at Ni micro-patterned electrodes.Electrochim Acta2021;368:137678

[50]

Iwata R,Wilke KL.Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting.Joule2021;5:887-900

[51]

Teschke O.Effect of PTFE coverage on the performance of gas evolving electrodes.J Electrochem Soc1984;131:1095-7

[52]

Raman A,van der Meer D,Gardeniers H.Potential response of single successive constant-current-driven electrolytic hydrogen bubbles spatially separated from the electrode.Electrochim Acta2022;425:140691

[53]

Li N,Wang X,An J.Electrosynthesis of hydrogen peroxide via two-electron oxygen reduction reaction: a critical review focus on hydrophilicity/hydrophobicity of carbonaceous electrode.Chem Eng J2022;450:138246

[54]

Garcia-rodriguez O,Olvera-vargas H,Wang Z.Mineralization of electronic wastewater by electro-Fenton with an enhanced graphene-based gas diffusion cathode.Electrochim Acta2018;276:12-20

[55]

Hou D,Nerenberg R.Hydrophobic gas transfer membranes for wastewater treatment and resource recovery.Environ Sci Technol2019;53:11618-35

[56]

Forner-Cuenca A,Gubler L,Schmidt TJ.Engineered water highways in fuel cells: radiation grafting of gas diffusion layers.Adv Mater2015;27:6317-22

[57]

Hu X,Feng W,Wei Z.Electrocatalytic oxygen evolution activities of metal chalcogenides and phosphides: fundamentals, origins, and future strategies.J Energ Chem2023;81:167-91

[58]

Guo D,Chi J,Shao Z.Cu2S@NiFe layered double hydroxides nanosheets hollow nanorod arrays self-supported oxygen evolution reaction electrode for efficient anion exchange membrane water electrolyzer.Int J Hydrog Energy2023;48:17743-57

[59]

Guo D,Yu H,Shao Z.Self-supporting NiFe layered double hydroxide “nanoflower” cluster anode electrode for an efficient alkaline anion exchange membrane water electrolyzer.Energies2022;15:4645

[60]

Lu Z,Yu X.Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes.Adv Mater2014;26:2683-7

[61]

Xu W,Sun X,Duan X.Superwetting electrodes for gas-involving electrocatalysis.Acc Chem Res2018;51:1590-8

[62]

Cheng C,Li L.The contribution of water molecules to the hydrogen evolution reaction.Sci China Chem2022;65:1854-66

[63]

Tang Y,Xu X.MXene Nanoarchitectonics: defect-engineered 2D MXenes towards enhanced electrochemical water splitting.Adv Energ Mater2022;12:2103867

[64]

Li S,An X,Jiang Z.Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives.Nanoscale2021;13:12788-817

[65]

Li Z,Song J.Gas-liquid-solid triphase interfacial chemical reactions associated with gas wettability.Adv Materials Inter2021;8:2001636

[66]

Andaveh R,Maleki M.Superaerophobic/superhydrophilic surfaces as advanced electrocatalysts for the hydrogen evolution reaction: a comprehensive review.J Mater Chem A2022;10:5147-73

[67]

Shan X,Mu H.An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting.Angew Chem Int Ed Engl2020;59:1659-65

[68]

Kong A,Gu H.Synergetic control of Ru/MXene 3D electrode with superhydrophilicity and superaerophobicity for overall water splitting.Chem Eng J2021;426:131234

[69]

Lee J,Park C,Ju H.Modeling of gas evolution processes in porous electrodes of zero-gap alkaline water electrolysis cells.Fuel2022;315:123273

[70]

Kale MB,Gomaa Abdelkader Mohamed A.Electrocatalysts by electrodeposition: recent advances, synthesis methods, and applications in energy conversion.Adv Funct Mater2021;31:2101313

[71]

Kong A,Liu M.Robust Pt/TiO2/Ni(OH)2 nanosheet arrays enable outstanding performance for high current density alkaline water electrolysis.Appl Catal B Environ2022;316:121654

[72]

Zhang D.Evaluating the behavior of electrolytic gas bubbles and their effect on the cell voltage in alkaline water electrolysis.Ind Eng Chem Res2012;51:13825-32

[73]

Dunnill CW,Mandale S,Phillips R.Optimizing the design of an alkaline water splitting device test cell for renewable energy storage as hydrogen.Arch Chem Chem Eng2020;2:1-9

[74]

Charles W Dunnill GP.Water Splitting test cell for renewable energy storage as hydrogen gas.J Fundam Renew Energy Appl2015;5:188Available from: https://cronfa.swan.ac.uk/Record/cronfa29225. [Last accessed on 25 Sep 2023]

[75]

David M,Sánchez-peña R.Advances in alkaline water electrolyzers: a review.J Energy Storage2019;23:392-403

[76]

Phillips R.Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas.RSC Adv2016;6:100643-51

[77]

Teuku H,Goh J,Loh KS.Review on bipolar plates for low-temperature polymer electrolyte membrane water electrolyzer.Intl J of Energy Res2021;45:20583-600

[78]

Wang J,Wang C.Corrosion behavior of three bipolar plate materials in simulated SPE water electrolysis environment.Int J Hydrog Energy2012;37:12069-73

[79]

Dominici G, Gabriel B. Analytical study of over-voltages in alkaline electrolysis and their parametric dependencies through a multi-physical model.Intl J of Energy Res2022;46:3295-323

[80]

Jang D,Kang S.Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system.Appl Energy2021;287:116554

[81]

Huang D,Fang J.A multiphysics model of the compactly-assembled industrial alkaline water electrolysis cell.Appl Energy2022;314:118987

[82]

Wong XY,Shen Y.Numerical analysis of hydrogen bubble behavior in a zero-gap alkaline water electrolyzer flow channel.Ind Eng Chem Res2021;60:12429-46

[83]

Gao L,Wang C.Three-dimensional two-phase CFD simulation of alkaline electrolyzers. J Electrochem 2023.

AI Summary AI Mindmap
PDF

59

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/