Nanostructured intermetallics: from rational synthesis to energy electrocatalysis

Mingcheng Zhang , Qianqian Liu , Weipei Sun , Ke Sun , Yucheng Shen , Wei An , Lu Zhang , Hui Chen , Xiaoxin Zou

Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (3) : 28

PDF
Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (3) :28 DOI: 10.20517/cs.2023.17
Review

Nanostructured intermetallics: from rational synthesis to energy electrocatalysis

Author information +
History +
PDF

Abstract

Intermetallics are a large family of structurally ordered alloys that combines a metal element with other metal/metalloid elements with a clearly defined stoichiometric ratio. Intermetallics possess abundant crystal structures and atomic packing motifs, giving rise to a great variety of electronic configurations and surface adsorption properties. The wide electronic and geometric diversity makes intermetallics a highly promising population for discovering advanced materials for various catalytic applications. This review presents recent advances in the reaction synthesis of intermetallic materials at the nanoscale and their energy-related electrocatalytic applications. Initially, we introduce general principles for the formation of stable intermetallic structures. Subsequently, we elaborate on common synthetic strategies of nanostructured intermetallics, such as thermal annealing, wet-chemical methods, metallothermic reduction, and template-directed synthesis. Furthermore, we discuss the wide employment of these intermetallic nanocatalysts in many different kinds of electrocatalytic applications, as well as highlight the theoretical and experimental evidence for establishing a reasonable relationship between atomic arrangement and catalytic activity. Finally, we propose some perspectives for future developments of intermetallic preparation and catalytic applications.

Keywords

Intermetallics / ordered arrangement / Hume-Rothery rule / electrocatalysis / energy conversion

Cite this article

Download citation ▾
Mingcheng Zhang, Qianqian Liu, Weipei Sun, Ke Sun, Yucheng Shen, Wei An, Lu Zhang, Hui Chen, Xiaoxin Zou. Nanostructured intermetallics: from rational synthesis to energy electrocatalysis. Chemical Synthesis, 2023, 3(3): 28 DOI:10.20517/cs.2023.17

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen T,Edman Tsang SC.Interstitial and substitutional light elements in transition metals for heterogeneous catalysis.Chem Sci2020;12:517-32 PMCID:PMC8179013

[2]

Chen H,Liang X.Light alloying element-regulated noble metal catalysts for energy-related applications.Chinese J Catal2022;43:611-35

[3]

Chen H,Wang Y.Crystal phase engineering of electrocatalysts for energy conversions.Nano Res2022;15:10194-217

[4]

Liang J,Hwang S.Atomic arrangement engineering of metallic nanocrystals for energy-conversion electrocatalysis.Joule2019;3:956-91

[5]

Chen H,Wang Y.Correction: d-sp orbital hybridization: a strategy for activity improvement of transition metal catalysts.Chem Commun2022;58:7730-40

[6]

Nakaya Y.Catalysis of alloys: classification, principles, and design for a variety of materials and reactions.Chem Rev2023;123:5859-947

[7]

Zhou M,Fang J.Noble-Metal based random alloy and intermetallic nanocrystals: syntheses and applications.Chem Rev2021;121:736-95

[8]

Furukawa S,Shimizu K.Catalyst design concept based on a variety of alloy materials: a personal account and relevant studies.J Mater Chem A2020;8:15620-45

[9]

Brown OW,Johnston RA.Catalytic activity of intermetallic compounds in the gas phase reduction of nitrobenzene.J Phys Chem1939;43:805-7

[10]

Berk B.Catalytic activity of intermetallic compounds in the vapor-phase reduction of nitrobenzene. II.J Phys Chem1942;46:964-8.

[11]

Butler JN,Parry JM.Some topics in electrocatalysis.Surf Sci1969;18:140-58

[12]

Huq AKMS,Makrides AC.Electrochemical behavior of nickel compounds: II. Anodic dissolution and oxygen reduction in perchlorate solutions.J Electrochem Soc1964;111:278

[13]

Justi EW,Kalberlah AW,Schaefer MH.Electrocatalysis in the nickel titanium system.Energy Conversion1970;10:183-7

[14]

Walter C,Driess M.Perspective on intermetallics towards efficient electrocatalytic water-splitting.Chem Sci2021;12:8603-31 PMCID:PMC8246119

[15]

Miles MH.Evaluation of electrocatalysts for water electrolysis in alkaline solutions.J Electroanal Chem Interf Electrochem1975;60:89-96

[16]

Jakšić M.Electrocatalysis of hydrogen evolution in the light of the brewer - engel theory for bonding in metals and intermetallic phases.Electrochimica Acta1984;29:1539-50

[17]

Lu PWT.Nickel-based alloys as electrocatalysts for oxygen evolution from alkaline solutions.J Electrochem Soc1978;125:265-70

[18]

Katoh A,Shibata M.Design of electrocatalyst for CO2 reduction: V . effect of the microcrystalline structures of Cu-Sn and Cu-Zn alloys on the electrocatalysis of CO2 reduction.J Electrochem Soc1994;141:2054-8

[19]

Abghoui Y,Howalt JG,Skúlason E.Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT Guide for experiments.ACS Catal2016;6:635-46

[20]

Armbrüster M.Intermetallic compounds in catalysis - a versatile class of materials meets interesting challenges.Sci Technol Adv Mater2020;21:303-22 PMCID:PMC7889166

[21]

Rößner L.Electrochemical energy conversion on intermetallic compounds: a review.ACS Catal2019;9:2018-62

[22]

Chen X.Transition metal silicides: fundamentals, preparation and catalytic applications.Catal Sci Technol2019;9:4785-820

[23]

Jothi PR,Fokwa BPT.A simple, general synthetic route toward nanoscale transition metal borides.Adv Mater2018;30:e1704181

[24]

Wang D,Li Y.Nanocrystalline intermetallics and alloys.Nano Res2010;3:574-80

[25]

Kumar A,Kim S.Solid-State reaction synthesis of nanoscale materials: strategies and applications.Chem Rev2022;122:12748-863

[26]

Li J.Intermetallic nanoparticles: synthetic control and their enhanced electrocatalysis.Acc Chem Res2019;52:2015-25

[27]

Xiao W,Gong M,Wang D.Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis.ACS Catal2018;8:3237-56

[28]

Yan Y,Gilroy KD,Xia Y.Intermetallic nanocrystals: syntheses and catalytic applications.Adv Mater2017;29:1605997

[29]

Furukawa S.Intermetallic compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis.ACS Catal2017;7:735-65

[30]

Menezes PW,Hausmann JN.Boosting water oxidation through in situ electroconversion of manganese gallide: an intermetallic precursor approach.Angew Chem Int Ed Engl2019;58:16569-74 PMCID:PMC6899514

[31]

Hausmann JN,Mebs S.Evolving highly active oxidic iron(III) phase from corrosion of intermetallic iron silicide to master efficient electrocatalytic water oxidation and selective oxygenation of 5-Hydroxymethylfurfural.Adv Mater2021;33:e2008823

[32]

Hume-Rothery W.Researches on the nature, properties, and conditions of formation of intermetallic compounds, with special reference to certain compounds of tin.J Inst Met1926; 35:295-361

[33]

Hume-Rothery W,W .The freezing points, melting points, and solid solubility limits of the alloys of sliver and copper with the elements of the b sub-groups.Phil Trans R Soc Lond A1934;233:1-97.

[34]

Mizutani U.The hume-rothery rules for structurally complex alloy phases. Surface properties and engineering of complex intermetallics. World scientific; 2010. pp. 323-99.

[35]

R. The theory of the properties of metals and alloys.Nature1937;139:348-9

[36]

Yannello VJ.Generality of the 18-n rule: intermetallic structural chemistry explained through isolobal analogies to transition metal complexes.Inorg Chem2015;54:11385-98

[37]

Fredrickson DC.Parallels in structural chemistry between the molecular and metallic realms revealed by complex intermetallic phases.Acc Chem Res2018;51:248-57

[38]

Nesper R.The Zintl-Klemm concept - a historical survey.Z anorg allg Chem2014;640:2639-48

[39]

Schütz M,Klein W,Fässler TF.Intermetallic phases meet intermetalloid clusters.Chem Soc Rev2021;50:8496-510

[40]

Miller GJ,Wang F.Quantitative advances in the Zintl-Klemm formalism. In: Fässler TF, editor. Zintl Phases. Berlin: Springer Berlin Heidelberg; 2011. pp. 1-55.

[41]

Wang Y,Liu C,Chen H.thermodynamics versus kinetics in nanosynthesis.Angew Chem Int Ed Engl2015;54:2022-51

[42]

Xia Y,Lim B.Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?.Angew Chem Int Ed Engl2009;48:60-103 PMCID:PMC2791829

[43]

Wu J.Platinum-based oxygen reduction electrocatalysts.Acc Chem Res2013;46:1848-57

[44]

You H,Ding B.Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications.Chem Soc Rev2013;42:2880-904

[45]

Alloyeau D,Mottet C.Size and shape effects on the order-disorder phase transition in CoPt nanoparticles. Nat Mater 2009;8:940-6.

[46]

Gibbs J W.The scientific papers of J. Willard Gibbs.Nature1907;75:361-2

[47]

Kayser FX.Sir William Chandler Roberts-Austen - His role in the development of binary diagrams and modern physical metallurgy.JPE1998;19:11-8

[48]

Clarke SM,Walsh JPS.Creating binary Cu-Bi compounds via high-pressure synthesis: a combined experimental and theoretical study.Chem Mater2017;29:5276-85

[49]

Terayama K,Nose Y.Efficient construction method for phase diagrams using uncertainty sampling.Phys Rev Materials2019;3

[50]

Oliynyk AO.Discovery of intermetallic compounds from traditional to machine-learning approaches.Acc Chem Res2018;51:59-68

[51]

Kim HY.Recent advances in nanostructured intermetallic electrocatalysts for renewable energy conversion reactions.J Mater Chem A2020;8:8195-217

[52]

Avrami M.Kinetics of phase change. I general theory.J Chem Phys1939;7:1103-12

[53]

Avrami M.Kinetics of phase change. II transformation-time relations for random distribution of nuclei.J Chem Phys1940;8:212-24

[54]

Avrami M.Granulation, phase change, and microstructure kinetics of phase change. III.J Chem Phys1941;9:177-84

[55]

Bai J,Jin Z,Xing W.Advanced Pt-based intermetallic nanocrystals for the oxygen reduction reaction.Chinese J Catal2022;43:1444-58

[56]

Zhang J,Cui Z.Strategies to enhance the electrochemical performances of Pt-based intermetallic catalysts.Chem Commun2021;57:11-26

[57]

Zhang S,Zhu H,Sun S.Structure-induced enhancement in electrooxidation of trimetallic FePtAu nanoparticles.J Am Chem Soc2012;134:5060-3

[58]

Zhang S,Huang B.Size effect on order-disorder transition kinetics of FePt nanoparticles.J Chem Phys2014;140:044328

[59]

Tzitzios V,Gjoka M.The effect of Mn doping in FePt nanoparticles on the magnetic properties of the L10 phase.Nanotechnology2006;17:4270-3

[60]

Qi W,Xiong S.Modeling size and shape effects on the order-disorder phase-transition temperature of CoPt nanoparticles.Small2010;6:1996-9

[61]

Oezaslan M,Strasser P.Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale.J Am Chem Soc2012;134:514-24

[62]

Kim SI,Kang M.Composition-selective fabrication of ordered intermetallic Au-Cu nanowires and their application to nano-size electrochemical glucose detection.Nanotechnology2015; 26:245702

[63]

Dai ZR,Wang ZL.Phase transformation, coalescence, and twinning of monodisperse fept nanocrystals.Nano Lett2001;1:443-7

[64]

Supansomboon S,Gentle A,Cortie M.Thin films of PtAl2 and AuAl2 by solid-state reactive synthesis.Thin Solid Films2015;589:805-12

[65]

Kondoh K,Kimura A,Aizawa T.In situ Synthesis of Mg2Si Intermetallics via powder metallurgy process.Mater Trans2003;44:981-5.

[66]

Winiarski M,Colineau E.Synthesis and properties of AxV2Al20 (A = Th, U, Np, Pu) ternary actinide aluminides.J Alloys Compd2017; 696:1113-9

[67]

Shablinskaya K,Tursina A,Yaroslavtsev A.Intermetallics La9Ru4In5 and Ce9Ru4Ga5 with new types of structures. Synthesis, crystal structures, physical properties.Intermetallics2012;23:106-10

[68]

Fernandes BB,Silva G.Preparation of Nb-25Si, Nb-37.5Si, Nb-66.6Si powders by high-energy ball milling and subsequent heat treatment.J Alloys Compd2007;434-435:509-13

[69]

Alanko GA,Bateman A.Mechanochemical synthesis and spark plasma sintering of the cerium silicides.J Alloys Compd2014;616:306-11

[70]

Wang Z,Wu X.Engineering ordered vacancies and atomic arrangement over the intermetallic PdM/CNT (M = Pb, Sn, In) nanocatalysts for synergistically promoting electrocatalysis N2 fixation.Appl. Catal. B Environ2022;314:121465

[71]

Abe H,Alden LR,Abruña HD.Electrocatalytic performance of fuel oxidation by Pt3Ti nanoparticles.J Am Chem Soc2008;130:5452-8

[72]

Chi M,Lei Y.Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing.Nat Commun2015;6:8925 PMCID:PMC4673855

[73]

Yu W,Qin Y.High‐Density frustrated lewis pair for high-performance hydrogen evolution.Adv. Energy Mater2023;13:2203136

[74]

Yoo TY,Sinha AK.Direct synthesis of intermetallic platinum-alloy nanoparticles highly loaded on carbon supports for efficient electrocatalysis.J Am Chem Soc2020;142:14190-200

[75]

Chen D,Zhou Y.Fe3Pt intermetallic nanoparticles anchored on N-doped mesoporous carbon for the highly efficient oxygen reduction reaction.Chem Commun2020;56:4898-901

[76]

Shen T,Xiao D.Engineering location and supports of atomically ordered L10-PdFe intermetallics for ultra-anticorrosion electrocatalysis.Adv Funct Materials2022;32:2203921

[77]

Yang CL,Yin P.Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells.Science2021;374:459-64

[78]

Ji X,Holden R.Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes.Nat Chem2010;2:286-93

[79]

He W,Zheng K.Structural evolution of anatase-supported platinum nanoclusters into a platinum-titanium intermetallic containing platinum single atoms for enhanced catalytic co oxidation.Angew Chem Int Ed Engl2023;62:e202213365

[80]

Bernal S,Gatica J,López-cartes C.Nanostructural evolution of a Pt/CeO2Catalyst reduced at increasing temperatures (473-1223 k): a hrem study.J Catal1997;169:510-5

[81]

Maligal-ganesh RV,Goh TW.A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: exemplified for furfural hydrogenation.ACS Catal2016;6:1754-63

[82]

Takahashi Y,Yamamoto S.Orbital magnetic moment and coercivity of SiO2 -coated FePt nanoparticles studied by x-ray magnetic circular dichroism.Phys Rev B2014;90

[83]

Kim J,Liu JP.Dispersible ferromagnetic fept nanoparticles.Adv Mater2009;21:906-9

[84]

Song TW,Sheng ZT.Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts.Nat Commun2022;13:6521 PMCID:PMC9622856

[85]

Chen H,Xin HL.Coalescence in the thermal annealing of nanoparticles: an in situ STEM study of the growth mechanisms of ordered Pt-Fe nanoparticles in a KCL matrix.Chem Mater2013;25:1436-42

[86]

Chen H,Yu Y.A surfactant-free strategy for synthesizing and processing intermetallic platinum-based nanoparticle catalysts.J Am Chem Soc2012;134:18453-9

[87]

Wang Z,Liu J.Ordered Vacancies on the body-centered cubic PdCu nanocatalysts.Nano Lett2021;21:9580-6

[88]

Meng C,Shi XR,Liu Y.Oxygen-deficient metal oxides supported nano-intermetallic InNi3C(0.5) toward efficient CO2 hydrogenation to methanol.Sci Adv2021;7:32 PMCID:PMC8336954

[89]

Li Q,Wu G.New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid.Nano Lett2015;15:2468-73

[90]

Kim J,Lee Y,Sun S.From core/shell structured FePt/Fe3O4 /MgO to ferromagnetic FePt nanoparticles.Chem Mater2008;20:7242-5

[91]

Wang T,Zhao Z.Sub-6 nm Fully Ordered L10-Pt-Ni-Co Nanoparticles enhance oxygen reduction via Co doping induced ferromagnetism enhancement and optimized surface strain.Adv Energy Mater2019;9:1803771

[92]

Chen H,Zhang K.Screening and understanding lattice silicon-controlled catalytically active site motifs from a library of transition metal-silicon intermetallics.Small2022;18:e2107371

[93]

Chen H.Intermetallic borides: structures, synthesis and applications in electrocatalysis.Inorg Chem Front2020;7:2248-64

[94]

Guo F,Ai X.A class of metal diboride electrocatalysts synthesized by a molten salt-assisted reaction for the hydrogen evolution reaction.Chem Commun2019;55:8627-30

[95]

Li Q,Ai X,Sun L.Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity.Adv Energy Mater2018;9:1803369

[96]

Ai X,Chen H.Transition-Metal-Boron intermetallics with strong interatomic d-sp orbital hybridization for high-performance electrocatalysis.Angew Chem Int Ed Engl2020;59:3961-5

[97]

Yuan Y,Lai W.Intermetallic compounds: liquid-phase synthesis and electrocatalytic applications.Chemistry2021;27:16564-80

[98]

Rong H,Xin P.Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: effective and stable catalysts.Adv Mater2016;28:2540-6

[99]

Liao H,Hou Y.Synthesis and electrocatalytic properties of PtBi nanoplatelets and PdBi nanowires.Nanoscale2014;6:1049-55

[100]

Maksimuk S,Peng Z.Synthesis and characterization of ordered intermetallic PtPb nanorods.J Am Chem Soc2007;129:8684-5

[101]

Cable RE.Low-Temperature solution synthesis of nanocrystalline binary intermetallic compounds using the polyol process.Chem Mater2005;17:6835-41

[102]

Guo J,Ya X.Intermetallic nanocrystals: seed-mediated synthesis and applications in electrocatalytic reduction reactions.Chemistry2022;28:e202202221

[103]

Samanta A,Jana S.Ultra-small intermetallic NiZn nanoparticles: a non-precious metal catalyst for efficient electrocatalysis.Nanoscale Adv2020;2:417-24 PMCID:PMC9419544

[104]

Bu L,Guo S.Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis.Science2016;354:1410-4

[105]

Chen W,Li L,Peng Q.A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals.Angew Chem Int Ed Engl2010;49:2917-21

[106]

Clarysse J,Yarema O,Yarema M.Size- and composition-controlled intermetallic nanocrystals via amalgamation seeded growth.Sci Adv2021;7 PMCID:PMC8318362

[107]

Chen H,Liu Y,Asefa T.Active site engineering in porous electrocatalysts.Adv Mater2020;32:e2002435

[108]

Zhang M,Ai X.Theory-guided electrocatalyst engineering: From mechanism analysis to structural design.Chinese J Catal2022;43:2987-3018

[109]

Seh ZW,Dickens CF,Nørskov JK.Combining theory and experiment in electrocatalysis: insights into materials design.Science2017; 355:eaad4998.

[110]

Chatenet M,Dekel DR.Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments.Chem Soc Rev2022;51:4583-762 PMCID:PMC9332215

[111]

Li Z,Wang S.In Situ Formed Pt3Ti Nanoparticles on a Two-Dimensional Transition Metal Carbide (MXene) used as efficient catalysts for hydrogen evolution reactions.Nano Lett2019;19:5102-8

[112]

Hu M,Yang S.Direct growth of uniform bimetallic core-shell or intermetallic nanoparticles on carbon via a surface-confinement strategy for electrochemical hydrogen evolution reaction.Adv Funct Materials2023;33:2212097

[113]

Zhao P,Hao X,Chen J.Rational design and synthesis of adjustable Pt and Pt-based 3D-nanoframeworks.ACS Appl Energy Mater2022;5:942-50

[114]

Lin C,Zhang Z.Structurally ordered Pt3Co nanoparticles anchored on N-Doped graphene for highly efficient hydrogen evolution reaction.ACS Sustainable Chem Eng2020;8:16938-45

[115]

Zhang J,Liu J.OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction.Nat Commun2022;13:5497 PMCID:PMC9489878

[116]

Zou X,Ai X,Zou X.Crystal phase-dependent electrocatalytic hydrogen evolution performance of ruthenium-boron intermetallics.Chem Commun2020;56:3061-4

[117]

Chen D,Pu Z.Anion modulation of Pt-group metals and electrocatalysis applications.Chemistry2021;27:12257-71

[118]

Li Z,Chen H.Realization of interstitial boron ordering and optimal near-surface electronic structure in Pd-B alloy electrocatalysts.J Chem Eng2021;419:129568

[119]

Ren Z,Yuan M.Si regulation of hydrogen adsorption on nanoporous PdSi hybrids towards enhancing electrochemical hydrogen evolution activity.Inorg Chem Front2023;10:1101-11

[120]

Pu Z,Zhang G.General synthesis of Transition-Metal-Based Carbon-Group Intermetallic catalysts for efficient electrocatalytic hydrogen evolution in wide pH range.Adv. Energy Mater2022;12:2200293

[121]

Chen D,Wang P.Mapping hydrogen evolution activity trends of intermetallic Pt-group silicides.ACS Catal2022;12:2623-31

[122]

Fu L,Yao N,Cheng G.IrMo nanocatalysts for efficient alkaline hydrogen electrocatalysis.ACS Catal2020;10:7322-7

[123]

Chen L,Shao R.Structurally ordered intermetallic Ir3V electrocatalysts for alkaline hydrogen evolution reaction.Nano Energy2021;81:105636

[124]

Chen H,Liu W.Promoting subordinate, efficient ruthenium sites with interstitial silicon for Pt-like electrocatalytic activity.Angew Chem Int Ed Engl2019;58:11409-13

[125]

Shen S,Zhang H.Highly active Si sites enabled by negative valent ru for electrocatalytic hydrogen evolution in LaRuSi.Angew Chem Int Ed Engl2022;61:e202206460

[126]

He Y,Zhang M.Discovery and facile synthesis of a new silicon based family as efficient hydrogen evolution reaction catalysts: a computational and experimental investigation of metal monosilicides.Small2021;17:e2006153

[127]

Zhang H,Ma X.Construction of ordered atomic donor-acceptor architectures in bcc IrGa intermetallic compounds toward highly electroactive and stable overall water splitting.Adv. Energy Mater2023;13:2202703

[128]

Wang Y,Sun L,Liu B.Ordered mesoporous intermetallic trimetals for efficient and pH-Universal hydrogen evolution electrocatalysis.Adv. Energy Mate12:2201478

[129]

Ji SJ,Suen NT.Lanthanide contraction regulates the HER activity of iron triad intermetallics in alkaline media.Chem Commun2020;56:14303-6

[130]

Song R,Okugawa M.Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production.Nat Commun2022;13:5157 PMCID:PMC9440032

[131]

Zhou Q,Li Y.Free-standing trimodal porous NiZn intermetallic and Ni heterojunction as highly efficient hydrogen evolution electrocatalyst in the alkaline electrolyte.Nano Energy2021;89:106402

[132]

Li Y,Du Y.Co3W intermetallic compound as an efficient hydrogen evolution electrocatalyst for water splitting and electrocoagulation in non-acidic media.J Chem Eng2022;438:135517

[133]

Kibsgaard J.Considerations for the scaling-up of water splitting catalysts.Nat Energy2019;4:430-3

[134]

Shao M,Dodelet JP.Recent advances in electrocatalysts for oxygen reduction reaction.Chem Rev2016;116:3594-657

[135]

Bing Y,Zhang L,Zhang J.Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction.Chem Soc Rev2010;39:2184-202

[136]

Lim J,Hong D.Atomically ordered Pt3Mn intermetallic electrocatalysts for the oxygen reduction reaction in fuel cells.J Mater Chem A2022;10:7399-408

[137]

Tetteh EB,Lee HY.Strained Pt(221) Facet in a PtCo@Pt-Rich catalyst boosts oxygen reduction and hydrogen evolution activity.ACS Appl Mater Interfaces2022;14:25246-56

[138]

Guan J,Liu T.Intermetallic FePt@PtBi core-shell nanoparticles for oxygen reduction electrocatalysis.Angew Chem Int Ed Engl2021;60:21899-904

[139]

Brown R,Khalakhan I.Unraveling the surface chemistry and structure in highly active sputtered Pt3Y Catalyst films for the oxygen reduction reaction.ACS Appl Mater Interfaces2020;12:4454-62

[140]

Peera SG,Sahu AK.Pt-rare earth metal alloy/metal oxide catalysts for oxygen reduction and alcohol oxidation reactions: an overview.Sustain Energy Fuels2019;3:1866-91

[141]

Zhu S,Bai J.Ultra-stable Pt5La intermetallic compound towards highly efficient oxygen reduction reaction.Nano Res2023;16:2035-40

[142]

Vej-hansen UG,Velázquez-palenzuela A.New platinum alloy catalysts for oxygen electroreduction based on alkaline earth metals.Electrocatalysis2017;8:594-604

[143]

Stamenkovic VR,Arenz M.Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces.Nat Mater2007;6:241-7

[144]

Chen C,Huo Z.Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces.Science2014;343:1339-43

[145]

Ding H,Su C.Epitaxial growth of ultrathin highly crystalline Pt-Ni nanostructure on a metal carbide template for efficient oxygen reduction reaction.Adv Mater2022;34:e2109188

[146]

Weber P,Dosche C.Highly durable Pt-based core-shell catalysts with metallic and oxidized Co species for boosting the oxygen reduction reaction.ACS Catal2022;12:6394-408

[147]

Shi W,Kwon Y.Scalable synthesis of (Pd,Cu)@Pt core-shell catalyst with high ORR activity and durability.J Electroanal Chem2022;918:116451

[148]

Cheng Q,Fu C.High-loaded sub-6 nm Pt1Co1 intermetallic compounds with highly efficient performance expression in PEMFCs.Energy Environ Sci2022;15:278-86

[149]

Zeng WJ,Yan QQ,Tong L.Phase diagrams guide synthesis of highly ordered intermetallic electrocatalysts: separating alloying and ordering stages.Nat Commun2022;13:7654 PMCID:PMC9741640

[150]

Wu Z,Xie Z.Revealing the role of phase structures of bimetallic nanocatalysts in the oxygen reduction reaction.ACS Catal2018;8:11302-13

[151]

Gamler JTL,Ashberry HM.Intermetallic Pd3Pb nanocubes with high selectivity for the 4-electron oxygen reduction reaction pathway.Nanoscale2020;12:2532-41

[152]

Feng Y,Ji Y.Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts.Sci Adv2018;4:eaap8817 PMCID:PMC6044738

[153]

Guo J,Tan X.Template-Directed rapid synthesis of Pd-based ultrathin porous intermetallic nanosheets for efficient oxygen reduction.Angew Chem Int Ed Engl2021;60:10942-9

[154]

Cui M,Hwang S.Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition.Sci Adv2022;8:eabm4322 PMCID:PMC8797181

[155]

Birdja YY,Figueiredo MC,Calle-vallejo F.Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels.Nat Energy2019;4:732-45

[156]

Ross MB,Li Y.Designing materials for electrochemical carbon dioxide recycling.Nat Catal2019;2:648-58

[157]

Gao D,Jeon HS.Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products.Nat Catal2019;2:198-210

[158]

Nitopi S,Scott SB.Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte.Chem Rev2019;119:7610-72

[159]

Kim C,Beermann V,Möller T.Alloy Nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR).Adv Mater2019;31:e1805617

[160]

Gamler JTL,Skrabalak SE.Random alloyed versus intermetallic nanoparticles: a comparison of electrocatalytic performance.Adv Mater2018;:e1801563

[161]

Kortlever R,Koper S.Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd-Pt Nanoparticles.ACS Catal2015;5:3916-23

[162]

Fan L,Zhu P,Wang H.Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor.Nat Commun2020;11:3633 PMCID:PMC7371694

[163]

He B,Cui Y.SnSe2 nanorods on carbon cloth as a highly selective, active, and flexible electrocatalyst for electrochemical reduction of CO2 into formate.ACS Appl Energy Mater2019;2:7655-62

[164]

Yang Q,Meng L.Nanoporous intermetallic snte enables efficient electrochemical CO2 reduction into formate via promoting the fracture of metal-oxygen bonding.Small2022;18:e2107968

[165]

Wan WB,Zeng SP.Nanoporous intermetallic Cu3Sn/Cu Hybrid electrodes as efficient electrocatalysts for carbon dioxide reduction.Small2021;17:e2100683

[166]

Kim D,Becknell N.Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles.J Am Chem Soc2017;139:8329-36

[167]

Jia L,Xu J.Phase-Dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals.Angew Chem Int Ed Engl2021;60:21741-5

[168]

Bagchi D,Singh AK.Structure-Tailored surface oxide on Cu-Ga intermetallics enhances CO2 reduction selectivity to methanol at ultralow potential.Adv Mater2022;34:e2109426

[169]

Liu D,Du X.Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition.Adv Funct Mater2021;31:2008983

[170]

Chen X,Du X.Atomic structure modification for electrochemical nitrogen reduction to ammonia.Adv Energy Mater2020;10:1903172

[171]

Montoya JH,Vojvodic A.The Challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations.ChemSusChem2015;8:2180-6

[172]

Zhao J.Single mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study.J Am Chem Soc2017;139:12480-7

[173]

Abghoui Y,Hlynsson VF,Ólafsdóttir H.Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design.Phys Chem Chem Phys2015;17:4909-18

[174]

Zhou J,Guo M,Huang B.Enhanced catalytic activity of bimetallic ordered catalysts for nitrogen reduction reaction by perturbation of scaling relations.ACS Catal2023;13:2190-201

[175]

Liu X,Zheng Y.Isolated boron sites for electroreduction of dinitrogen to ammonia.ACS Catal2020;10:1847-54

[176]

Ai X,Liang X.Metal-coordinating single-boron sites confined in antiperovskite borides for N2-to-NH3 catalytic conversion.ACS Catal2022;12:2967-78

[177]

Guo J,Xue F.Tunable synthesis of multiply twinned intermetallic Pd3Pb nanowire networks toward efficient N2 to NH3 conversion.J Mater Chem A2019;7:20247-53

[178]

Tong W,Wang P,Huang X.Exposed facet-controlled N2 electroreduction on distinct Pt3Fe nanostructures of nanocubes, nanorods and nanowires.Natl Sci Rev2021;8:nwaa088

[179]

Chu K,Li Q,Tian Y.Amorphization activated FeB2 porous nanosheets enable efficient electrocatalytic N2 fixation.J Energy Chem2021;53:82-9

[180]

Wang X,Lan J,Tan Y.Nanoporous intermetallic Pd3 Bi for efficient electrochemical nitrogen reduction.Adv Mater2021;33:e2007733

[181]

Wang T,Li T.A magnetron sputtered Mo3Si thin film: an efficient electrocatalyst for N2 reduction under ambient conditions.J Mater Chem A2021;9:884-8

[182]

Li X,Su D.Structural Changes of intermetallic catalysts under reaction conditions.Small Structures2021;2:2100011

[183]

Li Z,Chen H.Crystal phase-selective synthesis of intermetallic palladium borides and their phase-regulated (electro)catalytic properties.Catal Sci Technol2022;12:1038-42

[184]

Wei GF,Liu ZP.Group-VIII transition metal boride as promising hydrogen evolution reaction catalysts.Phys Chem Chem Phys2018;20:27752-7

AI Summary AI Mindmap
PDF

226

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/