Bioinspired nucleic acid-based dynamic networks for signal dynamics

Rui Zhong , Lin Yi , Xiarui Wang , Weijun Shu , Liang Yue

Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (3) : 27

PDF
Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (3) :27 DOI: 10.20517/cs.2023.15
Review

Bioinspired nucleic acid-based dynamic networks for signal dynamics

Author information +
History +
PDF

Abstract

Signaling dynamic networks in living systems determine the conversion of environmental information into biological activities. Systems chemistry, focusing on studying complex chemical systems, promotes the connections between chemistry and biology and provides a new way to mimic these signaling dynamic processes by designing artificial networks and understanding their emerging properties and functions that are absent in isolated molecules. Nucleic acids, while relatively simple in their design and synthesis, encode rich structural and functional information in their base sequence, which makes them an ideal building block for constructing complex dynamic networks that can mimic those in living systems. This review briefly introduces nucleic acid-based dynamic networks that can mimic natural signaling dynamic processes. We summarize how the nucleic acid-based dynamic networks are utilized to mimic relatively simple biological transformations, such as feedback and feedforward, which act as sub-networks to produce complex dynamic behaviors upon collective integration. We also emphasize the recent development of far-from-equilibrium networks, which are designed for converting the spatiotemporal signal and coupling with the downstream systems to achieve different functionalities and applications, including temporary nanostructure and patterns, programmed catalysis, and more, using nucleic acid-based dynamic networks. We also address the challenges of developing nucleic acid-based dynamic networks by directed evolution, operating complex networks under confinement conditions, and integrating multiplex networks into cell-like containments aiming to create protocells with living features.

Keywords

DNA nanotechnology / dissipative / far-from-equilibrium / signaling dynamic / protocell

Cite this article

Download citation ▾
Rui Zhong, Lin Yi, Xiarui Wang, Weijun Shu, Liang Yue. Bioinspired nucleic acid-based dynamic networks for signal dynamics. Chemical Synthesis, 2023, 3(3): 27 DOI:10.20517/cs.2023.15

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wedlich-Söldner R.Self-organization: the fundament of cell biology.Philos Trans R Soc Lond B Biol Sci2018;373:20170103 PMCID:PMC5904291

[2]

Hess B.Self-organization in living cells.Science1994;264:223-4

[3]

Kolisko M,Burki F,Keeling PJ.Single-cell transcriptomics for microbial eukaryotes.Curr Biol2014;24:R1081-2

[4]

Ma'ayan A,Neves S.Formation of regulatory patterns during signal propagation in a Mammalian cellular network.Science2005;309:1078-83 PMCID:PMC3032439

[5]

White FM.Methods for the analysis of protein phosphorylation-mediated cellular signaling networks.Annu Rev Anal Chem2016;9:295-315

[6]

Vignes H,Vermot J.Mechanical control of tissue shape: Cell-extrinsic and -intrinsic mechanisms join forces to regulate morphogenesis.Semin Cell Dev Biol2022;130:45-55

[7]

Oltvai ZN.Systems biology. Life's complexity pyramid.Science2002;298:763-4

[8]

Lehn JM.Perspectives in chemistry-steps towards complex matter.Angew Chem Int Ed Engl2013;52:2836-50

[9]

Han JD.Understanding biological functions through molecular networks.Cell Res2008;18:224-37

[10]

Gartner ZJ,Lavis LD.Unraveling cell-to-cell signaling networks with chemical biology.Nat Chem Biol2017;13:564-8

[11]

Ashkenasy G,Otto S.Systems chemistry.Chem Soc Rev2017;46:2543-54

[12]

Ludlow RF.Systems chemistry.Chem Soc Rev2008;37:101-8

[13]

Peyralans JJ.Recent highlights in systems chemistry.Curr Opin Chem Biol2009;13:705-13

[14]

Corbett PT,Vial L.Dynamic combinatorial chemistry.Chem Rev2006;106:3652-711

[15]

Li J,Otto S.Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry.J Am Chem Soc2013;135:9222-39

[16]

Mattia E.Supramolecular systems chemistry.Nat Nanotechnol2015;10:111-9

[17]

Kholodenko BN.Cell-signalling dynamics in time and space.Nat Rev Mol Cell Biol2006;7:165-76 PMCID:PMC1679905

[18]

Helwig B,Pogodaev AA,Huck WTS.Bottom-up construction of an adaptive enzymatic reaction network.Angew Chem Int Ed Engl2018;57:14065-9

[19]

Tyson JJ,Novak B.Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell.Curr Opin Cell Biol2003;15:221-31

[20]

Moustakas A.Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression.Cancer Sci2007;98:1512-20

[21]

Kaufman LS.Transduction of blue-light signals.Plant Physiol1993;102:333-7 PMCID:PMC158785

[22]

Almblad H,Liu F.Bacterial cyclic diguanylate signaling networks sense temperature.Nat Commun2021;12:1986

[23]

Orij R,Smits GJ.Intracellular pH is a tightly controlled signal in yeast.Biochim Biophys Acta2011;1810:933-44

[24]

Marchenko V.Cardiovascular responses to chemical stimulation of the lateral tegmental field and adjacent medullary reticular formation in the rat.Brain Res2003;977:247-60

[25]

Angeli D,Sontag ED.Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems.Proc Natl Acad Sci U S A2004;101:1822-7 PMCID:PMC357011

[26]

Chong SJF,Qu J.A feedforward relationship between active Rac1 and phosphorylated Bcl-2 is critical for sustaining Bcl-2 phosphorylation and promoting cancer progression.Cancer Lett2019;457:151-67

[27]

Eppig JJ.Intercommunication between mammalian oocytes and companion somatic cells.Bioessays1991;13:569-74

[28]

Szego CM.Mechanisms of hormone action: parallels in receptor-mediated signal propagation for steroid and peptide effectors.Life Sci1984;35:2383-96

[29]

Krosigk M, Bal T, McCormick DA. Cellular mechanisms of a synchronized oscillation in the thalamus.Science1993;261:361-4

[30]

Pardridge WM.Steady state model of 3,5,3'-triiodothyronine transport in liver predicts high cellular exchangeable hormone concentration relative to in vitro free hormone concentration.Endocrinology1987;120:1059-68

[31]

Samanta A,Liu W,Walther A.Signal-processing and adaptive prototissue formation in metabolic DNA protocells.Nat Commun2022;13:3968 PMCID:PMC9270428

[32]

Deng J.Autonomous DNA nanostructures instructed by hierarchically concatenated chemical reaction networks.Nat Commun2021;12:5132 PMCID:PMC8390752

[33]

Lehn JM.From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry.Chem Soc Rev2007;36:151-60

[34]

Herrmann A.Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures.Chem Soc Rev2014;43:1899-933

[35]

Yue L,Zhou Z.Nucleic acid based constitutional dynamic networks: From basic principles to applications.J Am Chem Soc2020;142:21577-94

[36]

Wang S,Willner I.Enzyme-guided selection and cascaded emergence of nanostructured constitutional dynamic networks.Nano Lett2020;20:5451-7 PMCID:PMC7467759

[37]

Zhou Z,Willner I.Dictated emergence of nucleic acid-based constitutional dynamic networks by DNA replication machineries.J Am Chem Soc2021;143:241-51

[38]

Zhang Q,Andersen ME.Ultrasensitive response motifs: basic amplifiers in molecular signalling networks.Open Biol2013;3:130031 PMCID:PMC3718334

[39]

He M.Time-dependent switching of constitutional dynamic libraries and networks from kinetic to thermodynamic distributions.J Am Chem Soc2019;141:18560-9

[40]

Zhang DY.Dynamic DNA nanotechnology using strand-displacement reactions.Nat Chem2011;3:103-13

[41]

Zhang DY,Yurke B.Engineering entropy-driven reactions and networks catalyzed by DNA.Science2007;318:1121-5

[42]

Hu Y,Idili A,Willner I.Triplex DNA nanostructures: From basic properties to applications.Angew Chem Int Ed Engl2017;56:15210-33

[43]

Gehring K,Guéron M.A tetrameric DNA structure with protonated cytosine.cytosine base pairs.Nature1993;363:561-5

[44]

Simmel FC,Singh HR.Principles and applications of nucleic acid strand displacement reactions.Chem Rev2019;119:6326-69

[45]

Walker MJ.An allosteric switch primes sequence-specific DNA recognition.Cell2019;176:4-6 PMCID:PMC6532627

[46]

Yang H,Li S,Chen XS.Structural basis of sequence-specific RNA recognition by the antiviral factor APOBEC3G.Nat Commun2022;13:7498 PMCID:PMC9722718

[47]

Osborne SE,Ellington AD.Aptamers as therapeutic and diagnostic reagents: problems and prospects.Curr Opin Chem Biol1997;1:5-9

[48]

Breaker RR.Imaginary ribozymes.ACS Chem Biol2020;15:2020-30 PMCID:PMC7919269

[49]

McConnell EM,Mou Q,Lu Y.Biosensing with DNAzymes.Chem Soc Rev2021;50:8954-94 PMCID:PMC9136875

[50]

Seeman NC.DNA in a material world.Nature2003;421:427-31

[51]

Seeman NC.DNA nanotechnology.Nat Rev Mater2018;3

[52]

Barabási AL.Network biology: understanding the cell’s functional organization.Nat Rev Genet2004;5:101-13

[53]

Bray D.Molecular networks: the top-down view.Science2003;301:1864-5

[54]

Jaenisch R.Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals.Nat Genet2003;33 Suppl:245-54

[55]

Vogel C.Insights into the regulation of protein abundance from proteomic and transcriptomic analyses.Nat Rev Genet2012;13:227-32 PMCID:PMC3654667

[56]

Emmert-Streib F.Network biology: a direct approach to study biological function.Wiley Interdiscip Rev Syst Biol Med2011;3:379-91

[57]

Purvis JE.Encoding and decoding cellular information through signaling dynamics.Cell2013;152:945-56 PMCID:PMC3707615

[58]

Wang F,Willner I.From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures.Chem Rev2014;114:2881-941

[59]

Lee TI,Robert F.Transcriptional regulatory networks in Saccharomyces cerevisiae.Science2002;298:799-804

[60]

Yue L,Wang S.Evolution of nucleic-acid-based constitutional dynamic networks revealing adaptive and emergent functions.Angew Chem Int Ed Engl2019;58:12238-45

[61]

Yue L,Willner I.Triggered reversible substitution of adaptive constitutional dynamic networks dictates programmed catalytic functions.Sci Adv2019;5:eaav5564 PMCID:PMC6510552

[62]

Zhou Z,Wang S,Willner I.DNA-based multiconstituent dynamic networks: hierarchical adaptive control over the composition and cooperative catalytic functions of the systems.J Am Chem Soc2018;140:12077-89

[63]

Wang S,Shpilt Z.Controlling the catalytic functions of DNAzymes within constitutional dynamic networks of DNA nanostructures.J Am Chem Soc2017;139:9662-71

[64]

Yue L,Cecconello A,Willner I.Orthogonal operation of constitutional dynamic networks consisting of DNA-tweezer machines.ACS Nano2017;11:12027-36

[65]

Wang S,Li ZY,Tian H.Light-induced reversible reconfiguration of DNA-based constitutional dynamic networks: Application to switchable catalysis.Angew Chem Int Ed Engl2018;57:8105-9

[66]

Yue L,Willner I.Three-dimensional nucleic-acid-based constitutional dynamic networks: Enhancing diversity through complexity of the systems.J Am Chem Soc2019;141:16461-70

[67]

Jiang Y.Memorizing environmental signals through feedback and feedforward loops.Curr Opin Cell Biol2021;69:96-102 PMCID:PMC8058236

[68]

Reeves GT.The engineering principles of combining a transcriptional incoherent feedforward loop with negative feedback.J Biol Eng2019;13:62 PMCID:PMC6617889

[69]

Patel A,Sen S.Assessment of robustness to temperature in a negative feedback loop and a feedforward loop.ACS Synth Biol2020;9:1581-90

[70]

Gao Y,Shang J.Enzyme-free autocatalysis-driven feedback DNA circuits for amplified aptasensing of living cells.ACS Appl Mater Interfaces2022;14:5080-9

[71]

Shi K,Tian R.A CRISPR-Cas autocatalysis-driven feedback amplification network for supersensitive DNA diagnostics.Sci Adv2021;7 PMCID:PMC7840123

[72]

Novák B.Design principles of biochemical oscillators.Nat Rev Mol Cell Biol2008;9:981-91 PMCID:PMC2796343

[73]

Liu H,Peng R.Artificial signal feedback network mimicking cellular adaptivity.J Am Chem Soc2019;141:6458-61 PMCID:PMC6673657

[74]

Zhu S.Implementing feedforward neural network using DNA strand displacement reactions.NANO2021;16:2150001

[75]

Yue L,Wulf V.Consecutive feedback-driven constitutional dynamic networks.Proc Natl Acad Sci U S A2019;116:2843-8 PMCID:PMC6386722

[76]

Bleris L,Glass D,Sontag E.Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template.Mol Syst Biol2011;7:519 PMCID:PMC3202791

[77]

Haley NEC,Mullor Ruiz I.Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement.Nat Commun2020;11:2562 PMCID:PMC7244503

[78]

Basu S,Thiberge S,Weiss R.Spatiotemporal control of gene expression with pulse-generating networks.Proc Natl Acad Sci U S A2004;101:6355-60 PMCID:PMC404049

[79]

Yue L,Lilienthal S.Intercommunication of DNA-based constitutional dynamic networks.J Am Chem Soc2018;140:8721-31

[80]

Wang C,Willner I.Controlling biocatalytic cascades with enzyme-DNA dynamic networks.Nat Catal2020;3:941-50

[81]

Wang C,Neumann E,Willner I.Integration of photocatalytic and dark-operating catalytic biomimetic transformations through DNA-based constitutional dynamic networks.Nat Commun2021;12:4224 PMCID:PMC8270929

[82]

Egolf DA.Statistical mechanics. Far from equilibrium.Science2002;296:1813-5

[83]

Goldbeter A.Dissipative structures in biological systems: bistability, oscillations, spatial patterns and waves.Philos Trans A Math Phys Eng Sci2018;376:20170376 PMCID:PMC6000149

[84]

Rizzoli SO.Synaptic vesicle recycling: steps and principles.EMBO J2014;33:788-822 PMCID:PMC4194108

[85]

David-Pfeuty T,Pantaloni D.Guanosinetriphosphatase activity of tubulin associated with microtubule assembly.Proc Natl Acad Sci U S A1977;74:5372-6 PMCID:PMC431725

[86]

Murrell M,Lenz M.Forcing cells into shape: the mechanics of actomyosin contractility.Nat Rev Mol Cell Biol2015;16:486-98 PMCID:PMC7443980

[87]

Schaffter SW,O’Brien J,Murugan A.Standardized excitable elements for scalable engineering of far-from-equilibrium chemical networks.Nat Chem2022;14:1224-32

[88]

Li Z,Willner I.Transient out-of-equilibrium nucleic acid-based dissipative networks and their applications.Adv Funct Materials2022;32:2200799

[89]

Grosso E, Franco E, Prins LJ, Ricci F. Dissipative DNA nanotechnology.Nat Chem2022;14:600-13

[90]

De S.Dissipative self-assembly driven by the consumption of chemical fuels.Adv Mater2018;30:e1706750

[91]

Te Brinke E,Herrmann A.Dissipative adaptation in driven self-assembly leading to self-dividing fibrils.Nat Nanotechnol2018;13:849-55

[92]

Liu Q,Yu B.DNA-based dissipative assembly toward nanoarchitectonics.Adv Funct Materials2022;32:2201196

[93]

Sorrenti A,Sato A.Non-equilibrium steady states in supramolecular polymerization.Nat Commun2017;8:15899 PMCID:PMC5481825

[94]

Busiello DM,Piazza F.Dissipation-driven selection of states in non-equilibrium chemical networks.Commun Chem2021;4:16 PMCID:PMC9814615

[95]

Wang S,Wulf V,Willner I.Dissipative constitutional dynamic networks for tunable transient responses and catalytic functions.J Am Chem Soc2020;142:17480-8

[96]

Zhou Z,Wang J.Dissipative gated and cascaded DNA networks.J Am Chem Soc2021;143:5071-9

[97]

Wang C,Ouyang Y.Gated dissipative dynamic artificial photosynthetic model systems.J Am Chem Soc2021;143:12120-8

[98]

Dehne H,Bausch AR.Transient self-organisation of DNA coated colloids directed by enzymatic reactions.Sci Rep2019;9:7350 PMCID:PMC6517385

[99]

Li N,Liu Y.Self-resetting molecular probes for nucleic acids detection enabled by fuel dissipative systems.Nano Today2021;41:101308 PMCID:PMC8486598

[100]

Ouyang Y,Willner I.Dissipative biocatalytic cascades and gated transient biocatalytic cascades driven by nucleic acid networks.Sci Adv2022;8:eabn3534 PMCID:PMC9075803

[101]

Dong J,Wang J,Willner I.Assembly of dynamic gated and cascaded transient DNAzyme networks.ACS Nano2022;16:6153-64 PMCID:PMC9047661

[102]

Luo M,Huo S.Four-dimensional deoxyribonucleic acid-gold nanoparticle assemblies.Angew Chem Int Ed Engl2020;59:17250-5 PMCID:PMC7540408

[103]

Ouyang Y,Manis-Levy H,Willner I.Transient dissipative optical properties of aggregated Au nanoparticles, CdSe/ZnS quantum dots, and supramolecular nucleic acid-stabilized Ag nanoclusters.J Am Chem Soc2021;143:17622-32

[104]

Li Z,Zhou Z,Willner I.Gated transient dissipative dimerization of DNA tetrahedra nanostructures for programmed DNAzymes catalysis.ACS Nano2022;16:3625-36 PMCID:PMC8945371

[105]

Wang J,Willner I.Cascaded dissipative DNAzyme-driven layered networks guide transient replication of coded-strands as gene models.Nat Commun2022;13:4414 PMCID:PMC9338015

[106]

Grosso E, Amodio A, Ragazzon G, Prins LJ, Ricci F. Dissipative synthetic DNA-based receptors for the transient loading and release of molecular cargo.Angew Chem Int Ed Engl2018;57:10489-93

[107]

Deng J,Sun M.Dissipative organization of DNA oligomers for transient catalytic function.Angew Chem Int Ed Engl2022;61:e202113477 PMCID:PMC9306540

[108]

Deng J.Fuel-driven transient DNA strand displacement circuitry with self-resetting function.J Am Chem Soc2020;142:21102-9 PMCID:PMC7612460

[109]

Deng J.ATP-powered molecular recognition to engineer transient multivalency and self-sorting 4D hierarchical systems.Nat Commun2020;11:3658 PMCID:PMC7374688

[110]

Reisler E.Actin structure and function: what we still do not understand.J Biol Chem2007;282:36133-7

[111]

Grosso E, Ponzo I, Ragazzon G, Prins LJ, Ricci F. Disulfide-linked allosteric modulators for multi-cycle kinetic control of DNA-based nanodevices.Angew Chem Int Ed Engl2020;59:21058-63

[112]

Grosso E, Prins LJ, Ricci F. Transient DNA-based nanostructures controlled by redox inputs.Angew Chem Int Ed Engl2020;59:13238-45

[113]

Mariottini D,Ercolani G,Ricci F.Dissipative operation of pH-responsive DNA-based nanodevices.Chem Sci2021;12:11735-9 PMCID:PMC8442697

[114]

Chen XM,Bisoyi HK.Light-fueled transient supramolecular assemblies in water as fluorescence modulators.Nat Commun2021;12:4993 PMCID:PMC8371092

[115]

Deng J,Jessen HJ.Multiple light control mechanisms in ATP-fueled non-equilibrium DNA systems.Angew Chem Int Ed Engl2020;59:12084-92 PMCID:PMC7384039

[116]

Wang J,Zhou Z.DNAzyme- and light-induced dissipative and gated DNA networks.Chem Sci2021;12:11204-12 PMCID:PMC8386649

[117]

Chen Y,Mao C.An autonomous DNA nanomotor powered by a DNA enzyme.Angew Chem Int Ed Engl2004;43:3554-7

[118]

Grosso E, Ragazzon G, Prins LJ, Ricci F. Fuel-responsive allosteric DNA-based aptamers for the transient release of ATP and cocaine.Angew Chem Int Ed Engl2019;58:5582-6

[119]

Grosso E, Irmisch P, Gentile S, Prins LJ, Seidel R, Ricci F. Dissipative Control over the toehold-mediated DNA strand displacement reaction.Angew Chem Int Ed Engl2022;61:e202201929 PMCID:PMC9324813

[120]

Agarwal S.Enzyme-driven assembly and disassembly of hybrid DNA-RNA nanotubes.J Am Chem Soc2019;141:7831-41

[121]

Gentile S,Pungchai PE,Prins LJ.Spontaneous reorganization of DNA-based polymers in higher ordered structures fueled by RNA.J Am Chem Soc2021;143:20296-301 PMCID:PMC8662731

[122]

Bucci J,Del Grosso E,Ricci F.Orthogonal enzyme-driven timers for DNA strand displacement reactions.J Am Chem Soc2022;144:19791-8 PMCID:PMC9634797

[123]

Abraham EH,Scala S.Cystic fibrosis transmembrane conductance regulator and adenosine triphosphate.Science1997;275:1324-6

[124]

Finger TE,Barrows J.ATP signaling is crucial for communication from taste buds to gustatory nerves.Science2005;310:1495-9

[125]

Shi Y,Sun C.ATP mimics pH-dependent dual peroxidase-catalase activities driving H2O2 decomposition.CCS Chem2019;1:373-83

[126]

Heinen L.Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems.Sci Adv2019;5:eaaw0590 PMCID:PMC6641946

[127]

Sun M,Walther A.Communication and cross-regulation between chemically fueled sender and receiver reaction networks.Angew Chem Int Ed Engl2023;62:e202214499 PMCID:PMC10107503

[128]

Kim J.Synthetic in vitro transcriptional oscillators.Mol Syst Biol2011;7:465 PMCID:PMC3063688

[129]

Weitz M,Kapsner K,Franco E.Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator.Nat Chem2014;6:295-302

[130]

Kim J,Winfree E.Construction of an in vitro bistable circuit from synthetic transcriptional switches.Mol Syst Biol2006;2:68 PMCID:PMC1762086

[131]

Schaffter SW.Building in vitro transcriptional regulatory networks by successively integrating multiple functional circuit modules.Nat Chem2019;11:829-38

[132]

Subsoontorn P,Winfree E.Ensemble Bayesian analysis of bistability in a synthetic transcriptional switch.ACS Synth Biol2012;1:299-316

[133]

Franco E,Kim J.Timing molecular motion and production with a synthetic transcriptional clock.Proc Natl Acad Sci U S A2011;108:E784-93 PMCID:PMC3189071

[134]

Fujii T.Predator-prey molecular ecosystems.ACS Nano2013;7:27-34

[135]

Baccouche A,Padirac A,Rondelez Y.Dynamic DNA-toolbox reaction circuits: a walkthrough.Methods2014;67:234-49

[136]

Montagne K,Sakai Y,Rondelez Y.Programming an in vitro DNA oscillator using a molecular networking strategy.Mol Syst Biol2011;7:466 PMCID:PMC3063689

[137]

Padirac A,Rondelez Y.Bottom-up construction of in vitro switchable memories.Proc Natl Acad Sci U S A2012;109:E3212-20 PMCID:PMC3511151

[138]

Zadorin AS,Gines G.Synthesis and materialization of a reaction-diffusion French flag pattern.Nat Chem2017;9:990-6

[139]

Dehne H,Bausch AR.Reversible and spatiotemporal control of colloidal structure formation.Nat Commun2021;12:6811 PMCID:PMC8611085

[140]

Padirac A,Rondelez Y.Nucleic acids for the rational design of reaction circuits.Curr Opin Biotechnol2013;24:575-80

[141]

Xiong X,Zhu Y.Molecular convolutional neural networks with DNA regulatory circuits.Nat Mach Intell2022;4:625-35

[142]

Qian L,Bruck J.Neural network computation with DNA strand displacement cascades.Nature2011;475:368-72

[143]

Okumura S,Lobato-Dauzier N.Nonlinear decision-making with enzymatic neural networks.Nature2022;610:496-501

[144]

Nimiritsky P,Eremichev R.Self-organization provides cell fate commitment in MSC sheet condensed areas via ROCK-dependent mechanism.Biomedicines2021;9:1192 PMCID:PMC8470239

[145]

Davidson EH,Oliveri P.A genomic regulatory network for development.Science2002;295:1669-78

[146]

Parsons JT,Schwartz MA.Cell adhesion: integrating cytoskeletal dynamics and cellular tension.Nat Rev Mol Cell Biol2010;11:633-43 PMCID:PMC2992881

[147]

Omidvar M,Sigurdardóttir SB.Mimicking natural strategies to create multi-environment enzymatic reactors: From natural cell compartments to artificial polyelectrolyte reactors.Biotechnol Adv2022;54:107798

[148]

Monteith GR,Roberts-Thomson SJ.The calcium-cancer signalling nexus.Nat Rev Cancer2017;17:367-80

[149]

Buchakjian MR.The engine driving the ship: metabolic steering of cell proliferation and death.Nat Rev Mol Cell Biol2010;11:715-27

[150]

Peng R,Wang H.DNA-based artificial molecular signaling system that mimics basic elements of reception and response.Nat Commun2020;11:978 PMCID:PMC7033183

[151]

Wang D,Chen F,Tan W.Network topology-directed design of molecular CPU for cell-like dynamic information processing.Sci Adv2022;8:eabq0917 PMCID:PMC9365278

[152]

Buddingh’ BC,van Hest JCM.Intercellular communication between artificial cells by allosteric amplification of a molecular signal.Nat Commun2020;11:1652 PMCID:PMC7125153

[153]

Mason AF,Williams DS.Hierarchical self-assembly of a copolymer-stabilized coacervate protocell.J Am Chem Soc2017;139:17309-12 PMCID:PMC5724030

[154]

Elani Y,Ces O.Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways.Nat Commun2014;5:5305

[155]

Joesaar A,Bögels B.DNA-based communication in populations of synthetic protocells.Nat Nanotechnol2019;14:369-78 PMCID:PMC6451639

[156]

Yang S,Bögels BWA,de Greef TFA.Protocellular CRISPR/Cas-based diffusive communication using transcriptional RNA signaling.Angew Chem Int Ed Engl2022;61:e202202436 PMCID:PMC9320857

[157]

Pawson T.Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems.Cell2004;116:191-203

[158]

Pawson T.Assembly of cell regulatory systems through protein interaction domains.Science2003;300:445-52

[159]

You L,Weiss R.Programmed population control by cell-cell communication and regulated killing.Nature2004;428:868-71

[160]

Bacchus W,El-Baba MD,Stelling J.Synthetic two-way communication between mammalian cells.Nat Biotechnol2012;30:991-6

AI Summary AI Mindmap
PDF

334

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/