Advancements of non-viologen-based anolytes for pH-neutral aqueous organic redox flow batteries

Hong Sun , Feiyang Hu , Zirui Jiang , Zhiwen Cui , Mahalingam Ravivarma , Hao Fan , Jiangxuan Song , Duanyang Kong

Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (4) : 33

PDF
Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (4) :33 DOI: 10.20517/cs.2023.07
review-article

Advancements of non-viologen-based anolytes for pH-neutral aqueous organic redox flow batteries

Author information +
History +
PDF

Abstract

Aqueous organic redox flow battery (AORFB) is regarded as the most promising next-generation technology for energy storage that stores electricity in redox-active organics lysed in mild salt-electrolytes. Composed of abundant elements such as C, H, O, and N, the adapted organics have a high degree of structural diversity and tunability, endowing it possible to modulate the physicochemical properties of water solubility, redox potential, and stability, and resulting in potential cost-effectiveness, ecological and environmental safety. Therefore, the designable organics consumedly expand the distance for exceeding battery behaviors in comparison with the inorganic counterparts. Herein, this study presents an overview of pH-neutral AORFBs that employ nonflammable water-soluble molecules with cheap inorganic salts as supporting electrolytes. Particular emphasis is given to the progress of molecular engineering design and synthesis of non-viologen-based organic anolytes and their respective AORFB performance. Additionally, some comments on present opportunities and perspectives of this ascendant domain are also demonstrated.

Keywords

Aqueous organic redox flow battery / pH-neutral / non-viologen derivatives / molecular engineering / stability mechanism

Cite this article

Download citation ▾
Hong Sun, Feiyang Hu, Zirui Jiang, Zhiwen Cui, Mahalingam Ravivarma, Hao Fan, Jiangxuan Song, Duanyang Kong. Advancements of non-viologen-based anolytes for pH-neutral aqueous organic redox flow batteries. Chemical Synthesis, 2023, 3(4): 33 DOI:10.20517/cs.2023.07

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sawin JL,Leidreiter A. Renewable energy and sustainable development; 2016. Available from: https://www.worldfuturecouncil.org/wp-content/uploads/2016/08/WFC_2016_Renewable-Energy-and-Sustainable-Development.pdf. [Last accessed on 4 Jul 2023]

[2]

Navalpotro P,Carretero-gonzález J.Sustainable materials for off-grid battery applications: advances, challenges and prospects.Sustain Energ Fuels2021;5:310-31

[3]

Rahman A,Haque MM.Environmental impact of renewable energy source based electrical power plants: solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic.Renew Sust Energ Rev2022;161:112279

[4]

Dunn B,Tarascon JM.Electrical energy storage for the grid: a battery of choices.Science2011;334:928-35

[5]

Wang W,Li B,Li L.Recent progress in redox flow battery research and development.Adv Funct Mater2013;23:970-86

[6]

Li G,Peng C,Chen W.Interface chemistry for sodium metal anodes/batteries: a review.Chem Synth2022;2:16

[7]

Zhang L,Wang Z.Hybrid electrochemical energy storage systems: an overview for smart grid and electrified vehicle applications.Renew Sust Energ Rev2021;139:110581

[8]

Kebede AA,Van Mierlo J.A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration.Renew Sust Energ Rev2022;159:112213

[9]

Liu W,Zhang H.Aqueous flow batteries: research and development.Chemistry2019;25:1649-64

[10]

Yao X.Boosting lithium-selenium batteries.Chem Synth2022;2:10

[11]

Thaller LH. Electrically rechargeable redox flow cells. Available from: https://patents.google.com/patent/US3996064A/en [Last accessed on 4 Jul 2023]

[12]

Iwakiri I,Almeida H,Figueira RB.Redox flow batteries: materials, design and prospects.Energies2021;14:5643

[13]

Park M,Wang W.Material design and engineering of next-generation flow-battery technologies.Nat Rev Mater2017;2

[14]

Kamat PV,Buriak JM.Redox flow batteries.ACS Energy Lett2017;2:1368-9

[15]

Chen Q,Yuan Z.Organic electrolytes for pH-neutral aqueous organic redox flow batteries.Adv Mater2021;32:2108777

[16]

Li Z.Material design of aqueous redox flow batteries: fundamental challenges and mitigation strategies.Adv Mater2020;32:e2002132

[17]

Luo J,Hu M,Liu TL.Status and prospects of organic redox flow batteries toward sustainable energy storage.ACS Energy Lett2019;4:2220-40

[18]

Huskinson B,Suh C.A metal-free organic-inorganic aqueous flow battery.Nature2014;505:195-8

[19]

Lin K,Gerhardt MR.Alkaline quinone flow battery.Science2015;349:1529-32

[20]

Feng R,Murugesan V.Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries.Science2021;372:836-40

[21]

Hu B,Rhodes Z.Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage.J Am Chem Soc2017;139:1207-14

[22]

Liu T,Nie Z,Wang W.A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte.Adv Energy Mater2016;6:1501449

[23]

Pan F.Redox species of redox flow batteries: a review.Molecules2015;20:20499-517 PMCID:PMC6332057

[24]

Cao J,Xu J.Organic flow batteries: recent progress and perspectives.Energy Fuels2020;34:13384-411

[25]

Kwabi DG,Aziz MJ.Electrolyte lifetime in aqueous organic redox flow batteries: a critical review.Chem Rev2020;120:6467-89

[26]

Beh ES,Gracia RL,Gordon RG.A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention.ACS Energy Lett2017;2:639-44

[27]

Jing Y,Goulet MA.In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries.Nat Chem2022;14:1103-9

[28]

Debruler C,Moss J.Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries.Chem2017;3:961-78

[29]

Li H,Hu B,Chang G.Spatial structure regulation: a rod-shaped viologen enables long lifetime in aqueous redox flow batteries.Angew Chem Int Ed Engl2021;60:26971-7

[30]

Hu S,Huang M.Phenylene-bridged bispyridinium with high capacity and stability for aqueous flow batteries.Adv Mater2021;33:e2005839

[31]

Lin K,Beh ES.A redox-flow battery with an alloxazine-based organic electrolyte.Nat Energy2016;1

[32]

Hollas A,Murugesan V.A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries.Nat Energy2018;3:508-14

[33]

Orita A,Sakai M.A biomimetic redox flow battery based on flavin mononucleotide.Nat Commun2016;7:13230 PMCID:PMC5078740

[34]

Li H,Ravivarma M,Feng Y.A stable organic dye catholyte for long-life aqueous flow batteries.Chem Commun2020;56:13824-7

[35]

Fan H,Ravivarma M.Radical charge population and energy: critical role in redox potential and cycling life of piperidine nitroxyl radical cathodes in aqueous zinc hybrid flow batteries.ACS Appl Mater Interfaces2020;12:43568-75

[36]

Hu B,Li H,Song J.Five-membered ring nitroxide radical: a new class of high-potential, stable catholytes for neutral aqueous organic redox flow batteries.Adv Funct Mater2021;31:2102734

[37]

Liu Y,Tong L.A long-lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical.Chem2019;5:1861-70

[38]

Fan H,Li H,Feng Y.Conjugate-driven electron density delocalization of piperidine nitroxyl radical for stable aqueous zinc hybrid flow batteries.Angew Chem Int Ed Engl2022;61:e202115908

[39]

Fan H,Ravivarma M.Mitigating ring-opening to develop stable TEMPO catholytes for pH-neutral all-organic redox flow batteries.Adv Funct Materials2022;32:2203032

[40]

Zu X,Qian Y,Yu G.Molecular engineering of azobenzene-based anolytes towards high-capacity aqueous redox flow batteries.Angew Chem Int Ed Engl2020;59:22163-70

[41]

Pang S,Wang P.Biomimetic Amino acid functionalized phenazine flow batteries with long lifetime at near-neutral pH.Angew Chem Int Ed Engl2021;60:5289-98

[42]

Xu J,Wang X,Ji Y.Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures.Joule2021;5:2437-49

[43]

Huang J,Yuan X.Radical stabilization of a tripyridinium-triazine molecule enables reversible storage of multiple electrons.Angew Chem Int Ed Engl2021;60:20921-5

[44]

Wiberg C,Busch M.Naphthalene diimides (NDI) in highly stable pH-neutral aqueous organic redox flow batteries.J Electroanal Chem2021;896:115224

[45]

Wiberg C,Wang E.Electrochemical evaluation of a napthalene diimide derivative for potential application in aqueous organic redox flow batteries.Energy Technol2019;7:1900843

[46]

Medabalmi V,Singh V,Byon HR.Naphthalene diimide as a two-electron anolyte for aqueous and neutral pH redox flow batteries.J Mater Chem A2020;8:11218-23

[47]

Pinheiro D,de Melo JSS.Sulfonated tryptanthrin anolyte increases performance in pH neutral aqueous redox flow batteries.Commun Chem2021;4:89 PMCID:PMC9814137

[48]

Hu P,Wang X.Renewable-lawsone-based sustainable and high-voltage aqueous flow battery.Energy Storage Mater2019;19:62-8

[49]

Li Z,Ali M,Chen W.Recent progress in organic species for redox flow batteries.Energy Storage Mater2022;50:105-38

[50]

Jin S,Kwabi DG.A Water-miscible quinone flow battery with high volumetric capacity and energy density.ACS Energy Lett2019;4:1342-8

[51]

Ji Y,Pollack DA.A phosphonate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate.Adv Energy Mater2019;9:1900039

[52]

Hu B,Hu M,Liu TL.A pH-neutral, metal-free aqueous organic redox flow battery employing an ammonium anthraquinone anolyte.Angew Chem Int Ed Engl2019;58:16629-36

[53]

Chai J,Lashgari A,Jiang JJ.A pH-neutral, aqueous redox flow battery with a 3,600-cycle lifetime: micellization-enabled high stability and crossover suppression.ChemSusChem2020;13:4069-77

[54]

Lee W,Kwon Y.Neutral pH aqueous redox flow batteries using an anthraquinone-ferrocyanide redox couple.J Mater Chem C2020;8:5727-31

[55]

Xia L,Gao H.Intramolecular hydrogen bonds induced high solubility for efficient and stable anthraquinone based neutral aqueous organic redox flow batteries.Jops2021;498:229896

[56]

Zhu Y,Qian Y.Anthraquinone-based anode material for aqueous redox flow batteries operating in nondemanding atmosphere.J Power Sources2021;501:229984

[57]

Xia L,Wang F.A low-potential and stable bis-dimethylamino-substituted anthraquinone for ph-neutral aqueous redox flow batteries.ChemElectroChem2022;9

[58]

Winsberg J,Muench S,Hager MD.TEMPO/phenazine combi-molecule: a redox-active material for symmetric aqueous redox-flow batteries.ACS Energy Lett2016;1:976-80

[59]

Nambafu GS,Zhang C.An organic bifunctional redox active material for symmetric aqueous redox flow battery.Nano Energy2021;89:106422

[60]

Wei X,Kirby B.An aqueous redox flow battery based on neutral alkali metal ferri/ferrocyanide and polysulfide electrolytes.J Electrochem Soc2016;163:A5150-3

[61]

Long Y,Wang G.A neutral polysulfide/ferricyanide redox flow battery.iScience2021;24:103157 PMCID:PMC8497995

[62]

Wiberg C,Evenäs L.The electrochemical response of core-functionalized naphthalene Diimides (NDI) - a combined computational and experimental investigation.Electrochimica Acta2021;367:137480

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/