Direct construction of d3-methylated all-carbon quaternary stereocenters through carbene-catalyzed desymmetrization

Jingcheng Guo , Ye Zhang , Xiaoxiang Zhang , Zhenqian Fu

Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (4) : 34

PDF
Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (4) :34 DOI: 10.20517/cs.2023.04
review-article

Direct construction of d3-methylated all-carbon quaternary stereocenters through carbene-catalyzed desymmetrization

Author information +
History +
PDF

Abstract

The construction of d3-methylated all-carbon quaternary stereocenters has been successfully developed via carbene-catalyzed desymmetrization of prochiral d3-methylated oxindolyl 1,3-diketones. Three new stereogenic centers were efficiently constructed with satisfactory outcomes. Diverse spiro-polycyclic molecules with a d3-methylated all-carbon quaternary stereocenter were generated in good to excellent yields with good to excellent diastereoselectivities and excellent enantioselectivities. This reaction features a broad substrate scope, good functional-group tolerance, and easy scale-up.

Keywords

d3-Methylated / all-carbon quaternary stereocenters / N-Heterocyclic carbene / organocatalysis / desymmetrization

Cite this article

Download citation ▾
Jingcheng Guo, Ye Zhang, Xiaoxiang Zhang, Zhenqian Fu. Direct construction of d3-methylated all-carbon quaternary stereocenters through carbene-catalyzed desymmetrization. Chemical Synthesis, 2023, 3(4): 34 DOI:10.20517/cs.2023.04

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun Q.Broadening of horizons in the synthesis of CD3-labeled molecules.Chem Soc Rev2021;50:10806-35

[2]

Kopf S,Li W,Junge K.Recent developments for the deuterium and tritium labeling of organic molecules.Chem Rev2022;122:6634-718

[3]

Atzrodt J,Kerr WJ.Deuterium- and tritium-labelled compounds: applications in the life sciences.Angew Chem Int Ed Engl2018;57:1758-84.

[4]

Pirali T,Cargnin S.Applications of deuterium in medicinal chemistry.J Med Chem2019;62:5276-97

[5]

Prakash G,Oliver GA,Maiti D.C-H deuteration of organic compounds and potential drug candidates.Chem Soc Rev2022;51:3123-63.

[6]

Wang P,Chen Y.Synthesis of all-deuterated tris(2-phenylpyridine) iridium for highly stable electrophosphorescence: the “deuterium effect”.J Mater Chem C2013;1:4821

[7]

Abe T,Konno H.Deuteration isotope effect on nonradiative transition of fac-tris (2-phenylpyridinato) iridium (III) complexes.Chem Phys Lett2010;491:199-202

[8]

Box CL,Yin R,Maurer RJ.Determining the effect of hot electron dissipation on molecular scattering experiments at metal surfaces.JACS Au2021;1:164-73 PMCID:PMC8395621

[9]

Bae HJ,Yakubovich A.Protecting benzylic C-H bonds by deuteration doubles the operational lifetime of deep-blue Ir-Phenylimidazole dopants in phosphorescent oleds.Adv Opt Mater2021;9:2100630

[10]

Liu X,Mathevet F.Isotope effect of host material on device stability of thermally activated delayed fluorescence organic light-emitting diodes.Small Science2021;1:2000057

[11]

Cleland WW.The use of isotope effects to determine enzyme mechanisms.Arch Biochem Biophys2005;433:2-12

[12]

Shao L.The kinetic isotope effect in the search for deuterated drugs.Drug News Perspect2010;23:398-404

[13]

Gómez-Gallego M.Kinetic isotope effects in the study of organometallic reaction mechanisms.Chem Rev2011;111:4857-963

[14]

Katsnelson A.Heavy drugs draw heavy interest from pharma backers.Nat Med2013;19:656

[15]

Jones PA.The role of DNA methylation in mammalian epigenetics.Science2001;293:1068-70

[16]

Barreiro EJ,Fraga CA.The methylation effect in medicinal chemistry.Chem Rev2011;111:5215-46

[17]

Leung CS,Tirado-Rives J.Methyl effects on protein-ligand binding.J Med Chem2012;55:4489-500 PMCID:PMC3353327

[18]

Zhang L,Cui J.Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation.Nature2011;481:204-8

[19]

Schmidt C.First deuterated drug approved.Nat Biotechnol2017;35:493-4

[20]

Mullard A.FDA approves dupilumab for severe eczema.Nat Rev Drug Discov2017;16:305

[21]

Zhong L,Zhang L,Li F.Synthesis of deuterium-enriched sorafenib derivatives and evaluation of their biological activities.Mol Divers2019;23:341-50

[22]

Barratt M J.Drug repositioning: bringing new life to shelved assets and existing drugs. Hoboken: John Wiley & Sons; 2012.

[23]

Braman V,Cheng C.A randomized phase I evaluation of CTP-499, a novel deuterium-containing drug candidate for diabetic nephropathy.Clin Pharmacol Drug Dev2013;2:53-66

[24]

Sabounjian L,Wu L.A first-in-patient, multicenter, double-blind, 2-arm, placebo-controlled, randomized safety and tolerability study of a novel oral drug candidate, CTP-499, in chronic kidney disease.Clin Pharmacol Drug Dev2016;5:314-25

[25]

Zeng XP,Wang YH,Zhou J.Catalytic enantioselective desymmetrization reactions to all-carbon quaternary stereocenters.Chem Rev2016;116:7330-96

[26]

Enders D,Henseler A.Organocatalysis by N-heterocyclic carbenes.Chem Rev2007;107:5606-55

[27]

Bugaut X.Organocatalytic umpolung: N-heterocyclic carbenes and beyond.Chem Soc Rev2012;41:3511-22

[28]

Cohen DT.Cooperative lewis acid/N-heterocyclic carbene catalysis.Chem Sci2012;3:53-7 PMCID:PMC4583212

[29]

Sarkar S, Biswas A, Samanta RC, Studer A. Catalysis with N-heterocyclic carbenes under oxidative conditions.Chemistry2013;19:4664-78

[30]

Ryan SJ,Lupton DW.Acyl anion free N-heterocyclic carbene organocatalysis.Chem Soc Rev2013;42:4906-17

[31]

Hopkinson MN,Schedler M.An overview of N-heterocyclic carbenes.Nature2014;510:485-96

[32]

Flanigan DM,White NA.Organocatalytic reactions enabled by N-heterocyclic carbenes.Chem Rev2015;115:9307-87. PMCID:PMC4986729

[33]

Chen XY,Ye S.Bifunctional N-Heterocyclic carbenes derived from l-pyroglutamic acid and their applications in enantioselective organocatalysis.Acc Chem Res2020;53:690-702

[34]

Ohmiya H.N-Heterocyclic carbene-based catalysis enabling cross-coupling reactions.ACS Catal2020;10:6862-9

[35]

Chen X,Jin Z.N-Heterocyclic carbene organocatalysis: activation modes and typical reactive intermediates.Chin J Chem2020;38:1167-202.

[36]

Zhang B,Guo D.Recent developments on NHC-driven dual catalytic approaches.Org Chem Front2022;9:5016-40

[37]

Zhang B.Assembly of versatile fluorine-containing structures via N-heterocyclic carbene organocatalysis.Sci China Chem2022;65:1691-703

[38]

Gao J,Du D.Generation of azolium dienolates as versatile nucleophilic synthons via N -heterocyclic carbene catalysis.Org Chem Front2021;8:6138-66

[39]

Bellotti P,Hopkinson MN.Recent advances in the chemistry and applications of N-heterocyclic carbenes.Nat Rev Chem2021;5:711-25.

[40]

Wadamoto M,Reynolds TE.Enantioselective synthesis of alpha,alpha-disubstituted cyclopentenes by an N-heterocyclic carbene-catalyzed desymmetrization of 1,3-diketones.J Am Chem Soc2007;129:10098-9 PMCID:PMC3059850

[41]

Ema T,Obayashi R.Construction of contiguous tetrasubstituted carbon stereocenters by intramolecular crossed benzoin reactions catalyzed by N-Heterocyclic Carbene (NHC) organocatalyst.Adv Synth Catal2012;354:3283-90

[42]

Zhuo S,Zhou L.Access to all-carbon spirocycles through a carbene and thiourea cocatalytic desymmetrization cascade reaction.Angew Chem Int Ed Engl2019;58:1784-8

[43]

Zhu T,Smetankova M.Carbene-catalyzed desymmetrization and direct construction of arenes with all-carbon quaternary chiral center.Angew Chem2019;131:15925-9

[44]

Hu JM,Sun BB.Chiral N-Heterocyclic-Carbene-Catalyzed cascade asymmetric desymmetrization of cyclopentenediones with enals: access to optically active 1,3-indandione derivatives.Org Lett2019;21:8582-6

[45]

Shee S,Gonnade RG.Enantioselective synthesis of tricyclic β-Lactones by NHC-Catalyzed desymmetrization of cyclic 1,3-Diketones.Org Lett2020;22:5407-11

[46]

Wang G,Guan Y.Desymmetrization of cyclic 1,3-Diketones under N-Heterocyclic carbene organocatalysis: access to organofluorines with multiple stereogenic centers.Research2021;2021:9867915 PMCID:PMC8422277

[47]

Geng H,Gui J.Practical synthesis of C-1 deuterated aldehydes enabled by NHC catalysis.Nat Catal2019;2:1071-7 PMCID:PMC8008838

[48]

Zhang X,Song R.Carbene-Catalyzed α,γ-Deuteration of enals under oxidative conditions.ACS Catal2020;10:5475-82

[49]

Sawama Y,Sajiki H.N-Heterocyclic carbene catalyzed deuteration of aldehydes in D2O.Synlett2020;31:699-702

[50]

Suresh P,Selva Ganesan S.NHC Organocatalysis in D2O for the highly diastereoselective synthesis of deuterated spiropyran analogues.ChemistrySelect2021;6:2036-40

[51]

Wang G,Huang W.Access to amide from aldimine via aerobic oxidative carbene catalysis and LiCl as cooperative lewis acid.Org Lett2017;19:3362-5.

[52]

Zhang Y,Guo Y,Fu Z.Access to enantioenriched organosilanes from enals and β‐silyl enones: carbene organocatalysis.Angew Chem2018;130:4684-8

[53]

Wang G,Hu W.Organocatalytic asymmetric N-sulfonyl amide C-N bond activation to access axially chiral biaryl amino acids.Nat Commun2020;11:946 PMCID:PMC7031291

[54]

Hu Z,Shi Q.Desymmetrization of N-Cbz glutarimides through N-heterocyclic carbene organocatalysis.Nat Commun2022;13:4042 PMCID:PMC9279320

[55]

Wang G,Wei C.Asymmetric Carbene-Catalyzed Oxidation of Functionalized Aldimines as 1,4-Dipoles.Angew Chem Int Ed Engl2021;60:7913-9

[56]

Wang G,Zhang L.N-heterocyclic carbene-catalyzed atroposelective synthesis of axially chiral 5-aryl 2-pyrones from enals.Sci China Chem2022;65:1953-61

[57]

Zhang C,Lupton DW.N -Heterocyclic Carbene Catalysis via the α,β-Unsaturated Acyl Azolium.ACS Catal2017;7:2583-96

[58]

Ding A,Guo H,Rios R.New development in the enantioselective synthesis of spiro compounds.Chem Soc Rev2018;47:5946-96.

[59]

Xu P,Chen C,Zhou F.Catalytic enantioselective construction of spiro quaternary carbon stereocenters.ACS Catal2019;9:1820-82.

[60]

Hong L.Recent advances in asymmetric organocatalytic construction of 3,3′-spirocyclic oxindoles.Adv Synth Catal2013;355:1023-52.

[61]

Cheng D,Tan B.Organocatalytic asymmetric assembly reactions: synthesis of spirooxindoles via organocascade strategies.ACS Catal2014;4:743-62

AI Summary AI Mindmap
PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/