Recent advances in heavily doped plasmonic copper chalcogenides: from synthesis to biological application

Qiulian Mao , Jicun Ma , Mei Chen , Shiying Lin , Noman Razzaq , Jiabin Cui

Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (3) : 26

PDF
Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (3) :26 DOI: 10.20517/cs.2022.41
Review

Recent advances in heavily doped plasmonic copper chalcogenides: from synthesis to biological application

Author information +
History +
PDF

Abstract

Copper-based chalcogenide compounds have emerged as alternative materials to Cd- or Pb-based traditional semiconductors and have drawn significant attention. Compared with widely reported semiconductors, copper chalcogenide nanocrystals (NCs) with abundant copper defects and vacancies present p-type features. Additionally, the migration of free hole carriers in copper-based chalcogenide NCs produced a metal-like local surface plasmon resonance (LSPR) effect. In this review, we focused on the plasmonic copper chalcogenide NCs achieved through a heavily doped strategy. The copper sulfur compounds with versatile atomic ratios and complex crystal structures exhibit rich electrical, optical, and magnetic properties, making them highly promising for a broad range of applications, from energy conversion to biomedical fields. Therefore, our main focus is on the classification of copper chalcogenide synthesis strategies, theoretical studies of doping, doping strategies, and biological applications. We aim to analyze the trends of copper-based chalcogenide nanomaterials for clinical applications by summarizing previous studies and presenting designs and concepts in a brief manner.

Keywords

Heavily doping / copper chalcogenides / LSPR / in vivo imaging / diagnosis and therapy

Cite this article

Download citation ▾
Qiulian Mao, Jicun Ma, Mei Chen, Shiying Lin, Noman Razzaq, Jiabin Cui. Recent advances in heavily doped plasmonic copper chalcogenides: from synthesis to biological application. Chemical Synthesis, 2023, 3(3): 26 DOI:10.20517/cs.2022.41

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Panfil YE,Banin U.Colloidal quantum nanostructures: emerging materials for display applications.Angew Chem Int Ed Engl2018;57:4274-95 PMCID:PMC6001641

[2]

Saldanha PL,Manna L.Large scale syntheses of colloidal nanomaterials.Nano Today2017;12:46-63

[3]

Shim M.n-type colloidal semiconductor nanocrystals.Nature2000;407:981-3

[4]

Carulli F,Zaffalon ML.Optical and magneto-optical properties of donor-bound excitons in vacancy-engineered colloidal nanocrystals.Nano Lett2021;21:6211-9 PMCID:PMC8397387

[5]

Hartley CL,Dempsey JL.Molecular-level insight into semiconductor nanocrystal surfaces.J Am Chem Soc2021;143:1251-66

[6]

Roth AN,Adamson MAS.Alkaline-earth chalcogenide nanocrystals: solution-phase synthesis, surface chemistry, and stability.ACS Nano2022;16:12024-35

[7]

Granados Del Águila A,Do TTH.Linearly polarized luminescence of atomically thin MoS2 semiconductor nanocrystals.ACS Nano2019;13:13006-14

[8]

Camats M,Gómez M.Copper nanocatalysts applied in coupling reactions: a mechanistic insight.Nanoscale2021;13:18817-38

[9]

Pellei M,Porchia M.Zinc coordination complexes as anticancer agents.Coord Chem Rev.2021;445:214088

[10]

Chábera P,Prakash O.A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence.Nature2017;543:695-9

[11]

Hu Z,Lesyuk R.Colloidal two-dimensional metal chalcogenides: realization and application of the structural anisotropy.Acc Chem Res2021;54:3792-803

[12]

Zhang J,Chen F,Teng F.Optical properties of multinary copper chalcogenide semiconductor nanocrystals and their applications in electroluminescent devices.Chin Sci Bull2021;66:2162-78

[13]

Kim JY,Yu JH.Highly efficient copper-indium-selenide quantum dot solar cells: suppression of carrier recombination by controlled ZnS overlayers.ACS Nano2015;9:11286-95

[14]

Yang W,Cha KC.Molecular solution approach to synthesize electronic quality Cu2ZnSnS4 thin films.J Am Chem Soc2013;135:6915-20

[15]

Just J,Singh S.Insights into nucleation and growth of colloidal quaternary nanocrystals by multimodal X-ray analysis.ACS Nano2021;15:6439-47 PMCID:PMC8291568

[16]

Lee JM,Prieto AL.A directed route to colloidal nanoparticle synthesis of the copper selenophosphate Cu3PSe4.Angew Chem Int Ed Engl2020;59:3038-42

[17]

Mcclary SA,Agrawal R.Role of annealing atmosphere on the crystal structure and composition of tetrahedrite-tennantite alloy nanoparticles.J Mater Chem C2018;6:10538-46

[18]

Agrawal A,Zandi O,Johns RW.Localized surface plasmon resonance in semiconductor nanocrystals.Chem Rev2018;118:3121-207

[19]

Wang J,Liu P.Colloidal synthesis of Cu2SnSe3 tetrapod nanocrystals.J Am Chem Soc2013;135:7835-8

[20]

Liu G,Chen J,Zhao Y.Cu-Sb-S ternary semiconductor nanoparticle plasmonics.Nano Lett2021;21:2610-7

[21]

Sun M,Chen K.Dual-plasmonic gold@copper sulfide core-shell nanoparticles: phase-selective synthesis and multimodal photothermal and photocatalytic behaviors.ACS Appl Mater Interfaces2020;12:46146-61

[22]

Liu Z,Shafei I.Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions.Nat Commun2019;10:1394 PMCID:PMC6437201

[23]

Ali MA,Liu X.Self-confined precipitation of ultrasmall plasmonic Cu2-xSe particles in transparent solid medium.J Phys Chem C2019;123:9394-9

[24]

Liu Y,Swihart MT.Plasmonic copper sulfide-based materials: a brief introduction to their synthesis, doping, alloying, and applications.J Phys Chem C2017;121:13435-47

[25]

Arumugam GM,Galian RE.Recent Progress in lanthanide-doped inorganic perovskite nanocrystals and nanoheterostructures: a future vision of bioimaging.Nanomaterials2022;12:2130 PMCID:PMC9268392

[26]

Yang R,Zhang Q.High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method.Nat Protoc2022;17:358-77

[27]

Sreejith S,Borah P.Organic–inorganic nanohybrids for fluorescence, photoacoustic and Raman bioimaging.Sci Bull2015;60:665-78

[28]

Ye K,Liang Z,Lin Z.Recent progress of bismuth vanadate-based photoelectrocatalytic water splitting.Chin Sci Bull2022;67:2115-25

[29]

Ge H,Yamashita H.Development of defective molybdenum oxides for photocatalysis, thermal catalysis, and photothermal catalysis.Chem Commun2022;58:8466-79

[30]

Chakraborty S,Viswanatha R.Local surface plasmon-assisted metal oxide perovskite heterostructure for small light emitters.J Phys Chem C2021;125:10565-71

[31]

Staller CM,Saez Cabezas CA.Quantitative analysis of extinction coefficients of Tin-doped indium oxide nanocrystal ensembles.Nano Lett2019;19:8149-54

[32]

Tandon B,Heo S.Competition between depletion effects and coupling in the plasmon modulation of doped metal oxide nanocrystals.Nano Lett2019;19:2012-9

[33]

Zandi O,Shearer AB.Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals.Nat Mater2018;17:710-7

[34]

Zheng JW,Wu SO.High loading of transition metal single atoms on chalcogenide catalysts.J Am Chem Soc2021;143:7979-90.10.1021/jacs.1c01097

[35]

Li XP,Chen C,Gao YJ.Simultaneous conduction and valence band regulation of indium-based quantum dots for efficient H2 photogeneration.Nanomaterials2021;11:1115 PMCID:PMC8146827

[36]

Liu X.Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials.Chem Soc Rev2014;43:3908-20

[37]

Zimmer D,Morgenroth W.Pressure-induced changes of the structure and properties of monoclinic α -chalcocite Cu2S.Phys Rev B2018;97

[38]

Barman SK.Stability enhancement of Cu2S against Cu vacancy formation by Ag alloying.J Phys Condens Matter2018;30:165701

[39]

Zimmer D,Bayarjargal L.Phase transition of tetragonal copper sulfide Cu2S at low temperatures.Phys Rev B2017;96

[40]

Khatri P.Prediction of a new phase of CuxS near stoichiometric composition.Int J Photoenergy2015;2015:1-7

[41]

Saona LA,Anziani-Ostuni G.Cysteine-mediated green synthesis of copper sulphide nanoparticles: biocompatibility studies and characterization as counter electrodes.Nanomaterials2022;12:3194 PMCID:PMC9501007

[42]

Wang J,Gao J,Chou M.Mechanism for anisotropic diffusion of liquid-like Cu atoms in hexagonal β-Cu2S.Phys Rev Materials2021;5

[43]

Muddassir Y,Ali A.Morphology-dependent thermoelectric properties of mixed phases of copper sulfide (Cu2-xS) nanostructures synthesized by hydrothermal method.Appl Phys A2021;127

[44]

Iqbal S,Anwer S.Effect of temperature and reaction time on the morphology of l-cysteine surface capped chalcocite (Cu2S) snowflakes dendrites nanoleaves and photodegradation study of methyl orange dye under visible light.Colloids Surf A Physicochem Eng Asp2020;601:124984

[45]

Asadov YG,Dashdemirov AO,Naghiyev TG.High-temperature X-ray diffraction study of Ag2S-Cu2S system.Mod Phys Lett B2020;34:2150018

[46]

Maskaeva LN,Markov VF,Voronin VI.Nanostructured copper(I) sulfide films: Synthesis, composition, morphology, and structure.Russ J Appl Chem2016;89:1939-47

[47]

Yarur Villanueva F,Qiu C.Binary Cu2-xS templates direct the formation of quaternary Cu2ZnSnS4 (Kesterite, Wurtzite) Nanocrystals.ACS Nano2021;15:18085-99

[48]

Zhu D,Liu Z.Seed-mediated growth of heterostructured Cu1.94S-MS (M = Zn, Cd, Mn) and alloyed CuNS2 (N = In, Ga) nanocrystals for use in structure- and composition-dependent photocatalytic hydrogen evolution.Nanoscale2020;12:6111-20

[49]

Liu W,Gao H.Kinetic condition driven phase and vacancy enhancing thermoelectric performance of low-cost and eco-friendly Cu2−xS.J Mater Chem C2019;7:5366-73

[50]

Chen L,Chen R,Li G.One-pot synthesis of roxbyite Cu1.81S triangular nanoplates relevant to plasmonic sensor.Mater Today Commun2019;18:136-9

[51]

Yamamoto K.X-ray study of the cation distribution in Cu2Se, Cu1.8Se and Cu1.8S; analysis by the maximum entropy method.Solid State Ion1991;48:241-8

[52]

Villa A,Marangi F.Optical Properties and Ultrafast Near-Infrared Localized Surface Plasmon Dynamics in Naturally p-Type Digenite Films.Adv Opt Mater2023;11:2201488

[53]

Zhang Y,Ge Z.Enhanced thermoelectric performance of Cu1.8S via lattice softening.J Chem Eng2022;428:131153

[54]

Zhang Y,Liu Y.Doping-mediated stabilization of copper vacancies to promote thermoelectric properties of Cu2-xS.Nano Energy2021;85:105991

[55]

Kuterbekov K,Kubenova M.Thermal properties of nanocrystalline copper sulfides KxCu1.85S (0 < x < 0.05).Lett Mater2022;12:191-6

[56]

Janickis V.Modification of polyamide films by semiconductive and conductive copper selenide-copper sulfide layers. Available from: http://mokslozurnalai.lmaleidykla.lt/publ/0235-7216/2017/4/214%E2%80%93225pdf.pdf. [Last accessed on 11 May 2023]

[57]

Li Cheng,Yu W.A novel strategy to fabricate CuS, Cu7.2S4, and Cu2-xSe nanofibers via inheriting the morphology of electrospun CuO nanofibers.Russ J Phys Chem2019;93:730-5

[58]

Tarachand ,Lalla NP.Thermoelectric properties of Ag-doped CuS nanocomposites synthesized by a facile polyol method.Phys Chem Chem Phys2018;20:5926-35

[59]

Yao J,Ellis DE.Syntheses, structures, physical properties, and electronic structures of KLn2CuS4 (Ln = Y, Nd, Sm, Tb, Ho) and K2Ln4Cu4S9 (Ln=Dy, Ho).J Solid State Chem2003;176:5-12

[60]

Roo J. Chemical Considerations for Colloidal Nanocrystal Synthesis.Chem Mater2022;34:5766-79

[61]

Rachkov AG.Colloidal Synthesis of Tunable Copper Phosphide Nanocrystals.Chem Mater2021;33:1394-406

[62]

Doan-Nguyen TP,Koynov K,Crespy D.Ultrasmall Nanocapsules Obtained by Controlling Ostwald Ripening.Angew Chem Int Ed Engl2021;60:18094-102

[63]

Wu J,Fang Y.Plasmon-enhanced photocatalytic cumulative effect on 2D semiconductor heterojunctions towards highly-efficient visible-light-driven solar-to-fuels conversion.J Chem Eng2022;437:135308

[64]

Wang W,Huang X.Different behaviors between interband and intraband transitions generated hot carriers on g-C3N4/Au for photocatalytic H2 production.Appl Sur Sci2020;513:145830

[65]

Nishi H.Electrochemical and Photoelectrochemical Applications of Plasmonic Metal and Compound Nanoparticles.Electrochemistry2019;87:321-7

[66]

Yan C,Yang S.Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells.RSC Adv2017;7:37887-97

[67]

Kriegel I,Rodríguez-Fernández J.Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals.J Am Chem Soc2012;134:1583-90

[68]

Chen L,Haruta M.Tin Ion Directed Morphology Evolution of Copper Sulfide Nanoparticles and Tuning of Their Plasmonic Properties via Phase Conversion.Langmuir2016;32:7582-7

[69]

Bekenstein Y,Keren-Zur S.Thermal doping by vacancy formation in copper sulfide nanocrystal arrays.Nano Lett2014;14:1349-53

[70]

Ou W,Wang K.Active manipulation of NIR plasmonics: the case of Cu2-xSe through electrochemistry.J Phys Chem Lett2018;9:274-80

[71]

Schimpf AM,Carroll GM.Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals.Acc Chem Res2015;48:1929-37

[72]

Jain PK,Engel JH,Faucheaux JA.Doped nanocrystals as plasmonic probes of redox chemistry.Angew Chem Int Ed Engl2013;52:13671-5

[73]

Alam R,Karwacki CJ.Modulation of Cu2-xS nanocrystal plasmon resonance through reversible photoinduced electron transfer.ACS Nano2016;10:2880-6

[74]

Liu K,Liu J.Copper chalcogenide materials as photothermal agents for cancer treatment.Nanoscale2020;12:2902-13

[75]

Li J,Zhang J.Chemical vapor deposition of quaternary 2D BiCuSeO p-type semiconductor with intrinsic degeneracy.Adv Mater2022;34:e2207796

[76]

Wang Y,Shao Z.High-performance se-based photoelectrochemical photodetectors via in situ grown microrod arrays.Adv Opt Mater2022;10:2201926

[77]

Prominski A,Li P.Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues.Nat Mater2022;21:647-55

[78]

Zhu D,Peng L,Yang C.Tuning the plasmonic resonance of Cu2-xS nanocrystals: effects of the crystal phase, morphology and surface ligands.J Mater Chem C2016;4:4880-8

[79]

Liu Y,Swihart MT.Reversible crystal phase interconversion between covellite cus and high chalcocite Cu2S nanocrystals.Chem Mater2017;29:4783-91

[80]

Li W,Rivera Gil P.CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents.J Am Chem Soc2013;135:7098-101

[81]

De Trizio L,Casu A.Sn cation valency dependence in cation exchange reactions involving Cu2-xSe nanocrystals.J Am Chem Soc2014;136:16277-84 PMCID:PMC4244862

[82]

Dorfs D,Miszta K.Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals.J Am Chem Soc2011;133:11175-80

[83]

Chen L,Sato R.Determination of a localized surface plasmon resonance mode of Cu7S4 nanodisks by plasmon coupling.Faraday Discuss2015;181:355-64

[84]

Ji M,Zhang W.Structurally well-defined Au@Cu2-xS core-shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency.Adv Mater2016;28:3094-101

[85]

Zhu D,Liu X,Prasad PN.Au-Cu2-xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy.J Mater Chem B2017;5:4934-42

[86]

Ma L,Liu X,Zhou L.Synthesis of dumbbell-like gold-metal sulfide core-shell nanorods with largely enhanced transverse plasmon resonance in visible region and efficiently improved photocatalytic activity.Adv Funct Mater2015;25:898-904

[87]

Liu X,Law WC.Au-Cu2-xSe heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging.Nano Lett2013;13:4333-9

[88]

Liu JN,Shi J.Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia.Chem Rev2017;117:6160-224

[89]

Liu Y,Liu J,He Y.Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy.Adv Mater2013;25:1353-9

[90]

Tian Q,Sun Y.Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells.Adv Mater2011;23:3542-7

[91]

Kriegel I,Manna L.Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives.Phys Rep2017;674:1-52

[92]

Fenton JL.Structure-selective cation exchange in the synthesis of zincblende MnS and CoS nanocrystals.Angew Chem Int Ed Engl2017;56:6464-7

[93]

Coughlan C,Dobrozhan O,Cabot A.Compound copper chalcogenide nanocrystals.Chem Rev2017;117:5865-6109

[94]

Balendhran S,Shrestha VR.Copper tetracyanoquinodimethane (CuTCNQ): a metal-organic semiconductor for room-temperature visible to long-wave infrared photodetection.ACS Appl Mater Interfaces2021;13:38544-52

[95]

Muhammad Z,Lv H.Electron doping induced semiconductor to metal transitions in ZrSe2 layers via copper atomic intercalation.Nano Res2018;11:4914-22

[96]

Gan Z,Dong A,Wang H.A laser and electric pulse modulated nonvolatile photoelectric response in nanoscale copper dusted metal-oxide-semiconductor structures.Adv Electron Mater2018;4:1800234

[97]

Muhammed MA,Rodríguez-Fernández J.Switching plasmons: gold nanorod-copper chalcogenide core-shell nanoparticle clusters with selectable metal/semiconductor NIR plasmon resonances.J Am Chem Soc2015;137:11666-77

[98]

Linic S,Ingram DB.Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy.Nat Mater2011;10:911-21

[99]

Ma RM,Sorger VJ,Zhang X.Room-temperature sub-diffraction-limited plasmon laser by total internal reflection.Nat Mater2011;10:110-3

[100]

Alavirad M,Berini P.Surface plasmon enhanced photodetectors based on internal photoemission.J Photon Energy2016;6:042511

[101]

Fang Y,Xiong K.Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO2 nanostructures.Nano Lett2015;15:4059-65

[102]

Smith JG,Jain PK.Plasmon resonances for solar energy harvesting: a mechanistic outlook.Nano Today2015;10:67-80

[103]

Zhou D,Zhou X.Semiconductor plasmon induced up-conversion enhancement in mCu2-xS@SiO2@Y2O3:Yb3+/Er3+ core-shell nanocomposites.ACS Appl Mater Interfaces2017;9:35226-33

[104]

Cui J,Guo C,James TD.Highly efficient photothermal semiconductor nanocomposites for photothermal imaging of latent fingerprints.Anal Chem2015;87:11592-8

[105]

Cui J,Guo C,Xu S.Fluorine grafted Cu7S4-Au heterodimers for multimodal imaging guided photothermal therapy with high penetration depth.J Am Chem Soc2018;140:5890-4

[106]

Wang Y,Sang D,Lin H.Cu2-xSe/Bi2Se3@PEG Z-scheme heterostructure: a multimode bioimaging guided theranostic agent with enhanced photo/chemodynamic and photothermal therapy.Biomater Sci2021;9:4473-83

[107]

Shi H,Wu L.Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis.Acta Biomater2018;72:256-65

[108]

Yuan Y,Zhang J,Barman I.Furin-mediated self-assembly of olsalazine nanoparticles for targeted raman imaging of tumors.Angew Chem Int Ed Engl2021;60:3923-7 PMCID:PMC7902394

[109]

Lee S,Bae C,Kim YK.Nano theranostics platforms that utilize proteins.Coord Chem Rev2020;412:213258

[110]

Cai H,Wang X.A nanostrategy for efficient imaging-guided antitumor therapy through a stimuli-responsive branched polymeric prodrug.Adv Sci2020;7:1903243 PMCID:PMC7080516

[111]

Staal AHJ,Tagit O.In vivo clearance of 19F MRI imaging nanocarriers is strongly influenced by nanoparticle ultrastructure.Biomaterials2020;261:120307

[112]

Su H,Cleary K.State of the art and future opportunities in MRI-guided robot-assisted surgery and interventions.Proc IEEE Inst Electr Electron Eng2022;110:968-92 PMCID:PMC9231642

[113]

Xu J,Liu Y.Vitality-enhanced dual-modal tracking system reveals the dynamic fate of mesenchymal stem cells for stroke therapy.Small2022;18:e2203431

[114]

Wang H,Lu L.Reducing valence states of Co Active Sites in a Single-Atom Nanozyme for Boosted Tumor Therapy.Adv Funct Materials2022;32:2200331

[115]

Pipal RW,Musacchio PZ.Metallaphotoredox aryl and alkyl radiomethylation for PET ligand discovery.Nature2021;589:542-7 PMCID:PMC7856055

[116]

Chen Y,Zhang H,Yang D.Laminated PET-based membranes with sweat transportation and dual thermal insulation properties.J Chem Eng2022;450:138177

[117]

Zhou YP,Takahashi K.Development of a PET radioligand for α2δ-1 subunit of calcium channels for imaging neuropathic pain.Eur J Med Chem2022;242:114688 PMCID:PMC9623503

[118]

Wu W,Shi J.Dual Size/charge-switchable nanocatalytic medicine for deep tumor therapy.Adv Sci2021;8:2002816 PMCID:PMC8097343

[119]

Guo W,Jacobson O.Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence.ACS Nano2015;9:488-95 PMCID:PMC4310640

[120]

Zhou M,Huang M.A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy.J Am Chem Soc2010;132:15351-8 PMCID:PMC2966020

[121]

Quintana C,Humphrey MG.Transition metal complex/gold nanoparticle hybrid materials.Chem Soc Rev2020;49:2316-41

[122]

Shin TH,Kim S.Recent advances in magnetic nanoparticle-based multi-modal imaging.Chem Soc Rev2015;44:4501-16

[123]

Chen Y,Wu R,Hu G.Dual active center-assembled Cu31S16-Co9-xNixS8 heterodimers: coherent interface engineering induces multihole accumulation for light-enhanced electrocatalytic oxygen evolution.ACS Appl Mater Interfaces2021;13:20094-104

[124]

Xu J,Guo C.Ultrasmall Cu7S4 @MoS2 Hetero-nanoframes with abundant active edge sites for ultrahigh-performance hydrogen evolution.Angew Chem Int Ed Engl2016;55:6502-5

[125]

Zhu H,Wang Y,James TD.Stepwise-enhanced tumor targeting of near-infrared emissive Au Nanoclusters with high quantum yields and long-term stability.Anal Chem2022;94:13189-96 PMCID:PMC9591319

[126]

Shi H,Yan R.Magnetic semiconductor Gd-doping CuS nanoparticles as activatable nanoprobes for bimodal imaging and targeted photothermal therapy of gastric tumors.Nano Lett2019;19:937-47

[127]

Han Y,Liu H.The release and detection of copper ions from ultrasmall theranostic Cu2-xSe nanoparticles.Nanoscale2019;11:11819-29

[128]

Zhang Y,Ye S.A hydrogen sulphide-responsive and depleting nanoplatform for cancer photodynamic therapy.Nat Commun2022;13:1685 PMCID:PMC8967875

[129]

Cui C,Fang J.Building multipurpose nano-toolkit by rationally decorating NIR-II fluorophore to meet the needs of tumor diagnosis and treatment.Chin Chem Lett2022;33:3478-83

[130]

Zhao M,Mao Q.A novel αvβ3 integrin-targeted NIR-II nanoprobe for multimodal imaging-guided photothermal therapy of tumors in vivo.Nanoscale2020;12:6953-8

[131]

Yun B,Yuan J,Li Z.Synthesis, modification and bioapplications of nanoscale copper chalcogenides.J Mater Chem B2020;8:4778-812

[132]

Sarma A,Seeck O.Photothermal synthesis of copper sulfide nanowires for direct lithography of chalcogenides on a chip.ACS Appl Nano Mater2022;5:4367-75

[133]

Li Y,Huang Q,Li C.Copper sulfide nanoparticles for photothermal ablation of tumor cells.Nanomedicine2010;5:1161-71

[134]

Zhou M,Liang S,Liang D.CuS nanodots with ultrahigh efficient renal clearance for positron emission tomography imaging and image-guided photothermal therapy.ACS Nano2015;9:7085-96 PMCID:PMC4855285

[135]

Zhang S,Zeng J.Ambient aqueous synthesis of ultrasmall PEGylated Cu2-xSe nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer.Adv Mater2016;28:8927-36

[136]

Bao J,Li C.Gold-promoting-satellite to boost photothermal conversion efficiency of Cu2-xSe for triple-negative breast cancer targeting therapy.Materials Today Nano2022;18:100211

[137]

Chen H,Tang J.Ultrahigh 19F loaded Cu1.75S nanoprobes for simultaneous (19)F magnetic resonance imaging and photothermal therapy.ACS Nano2016;10:1355-62 PMCID:PMC5218586

[138]

Guo C,Xu S.In situ fabrication of nanoprobes for 19F magnetic resonance and photoacoustic imaging-guided tumor therapy.Anal Chem2022;94:5317-24

[139]

Huang X,Guan G,Zou R.Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics.Acc Chem Res2017;50:2529-38

[140]

Siegel RL,Fuchs HE.Cancer statistics for the US Hispanic/Latino population, 2021.CA Cancer J Clin2021;71:7-33

[141]

Cho NH,Min JH.A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy.Nat Nanotechnol2011;6:675-82

[142]

Li J,Toh K.Enzymatically transformable polymersome-based nanotherapeutics to eliminate minimal relapsable cancer.Adv Mater2021;33:e2105254

[143]

Izci M,Manshian BB.The use of alternative strategies for enhanced nanoparticle delivery to solid tumors.Chem Rev2021;121:1746-803 PMCID:PMC7883342

[144]

Ding J,Zhao M.Protein sulfenic acid-mediated anchoring of gold nanoparticles for enhanced CT imaging and radiotherapy of tumors in vivo.Nanoscale2020;12:22963-9

[145]

Mao Q,Wang A.Aggregation of gold nanoparticles triggered by hydrogen peroxide-initiated chemiluminescence for activated tumor theranostics.Angew Chem Int Ed Engl2021;60:23805-11

[146]

Fang J,Wang A.In vivo quantitative assessment of a radiation dose based on ratiometric photoacoustic imaging of tumor apoptosis.Anal Chem2022;94:5149-58

[147]

Ye S,Cheng X.Red light-initiated cross-linking of NIR probes to cytoplasmic RNA: an innovative strategy for prolonged imaging and unexpected tumor suppression.J Am Chem Soc2020;142:21502-12

[148]

Cui J,Lu W,Wang L.Plasmon-enhanced photoelectrical hydrogen evolution on monolayer MoS2 decorated Cu1.75S-Au nanocrystals.Small2017;13:1602235

[149]

Cheng Y,Guo Z.An Intelligent biomimetic nanoplatform for holistic treatment of metastatic triple-negative breast cancer via photothermal ablation and immune remodeling.ACS Nano2020;14:15161-81

[150]

Song G,Wang Y.A low-toxic multifunctional nanoplatform based on Cu9S5@mSiO2 core-shell nanocomposites: combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment.Adv Funct Mater2013;23:4281-92

[151]

Zhou M,Adachi M.Single agent nanoparticle for radiotherapy and radio-photothermal therapy in anaplastic thyroid cancer.Biomaterials2015;57:41-9 PMCID:PMC4426239

[152]

Lin LS,Song J.Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy.J Am Chem Soc2019;141:9937-45

[153]

Wang R,Cai P.Surface-functionalized modified copper sulfide nanoparticles enhance checkpoint blockade tumor immunotherapy by photothermal therapy and antigen capturing.ACS Appl Mater Interfaces2019;11:13964-72

[154]

Shen S,Ouyang Z,Shen M.Photothermal-triggered dendrimer nanovaccines boost systemic antitumor immunity.J Control Release2023;355:171-83

[155]

Wang W,Tao P.Chemical-NIR dual-powered CuS/Pt nanomotors for tumor hypoxia modulation, deep tumor penetration and augmented synergistic phototherapy.J Mater Sci Technol2023;148:171-85

[156]

Chen Y,Zhou C.Gold nanobipyramid@copper sulfide nanotheranostics for image-guided NIR-II photo/chemodynamic cancer therapy with enhanced immune response.Acta Biomater2023;158:649-59

[157]

Gao F,Zhang J.Near-infrared light-responsive nanosystem with prolonged circulation and enhanced penetration for increased photothermal and photodynamic therapy.ACS Materials Lett2023;5:1-10

[158]

Liang J,Luo G.Tailor-made biotuner against colorectal tumor microenvironment to transfer harms into treasures for synergistic oncotherapy.Nano Today2022;47:101662

[159]

Yang G,Song T.Polydopamine-engineered theranostic nanoscouts enabling intracellular HSP90 mRNAs Fluorescence detection for imaging-guided chemo-photothermal therapy.Adv Healthc Mater2022;11:e2201615

[160]

Xin Y,Ma A.A robust ROS generation nanoplatform combating periodontitis via sonodynamic/chemodynamic combination therapy.J Chem Eng2023;451:138782

[161]

Zhang H,Song P.Hydrogen peroxide self-sufficient and glutathione-depleted nanoplatform for boosting chemodynamic therapy synergetic phototherapy.J Colloid Interface Sci2023;629:103-13

[162]

Shi Z,Lin C.Construction of iron-mineralized black phosphorene nanosheet to combinate chemodynamic therapy and photothermal therapy.Drug Deliv2022;29:624-36 PMCID:PMC8856058

[163]

Chen ZA,Li CJ.Manganese-containing polydopamine nanoparticles as theranostic agents for magnetic resonance imaging and photothermal/chemodynamic combined ferroptosis therapy treating gastric cancer.Drug Deliv29:1201-1211 PMCID:PMC9004524

[164]

Shi L,Zhang C.An acidity-unlocked magnetic nanoplatform enables self-boosting ROS generation through upregulation of lactate for imaging-guided highly specific chemodynamic therapy.Angew Chem Int Ed Engl2021;60:9562-72

[165]

Liu C,Cheng Y.An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy.Nat Commun2020;11:1735 PMCID:PMC7142144

[166]

Deng L,Sheng D.Low-intensity focused ultrasound-augmented Cascade chemodynamic therapy via boosting ROS generation.Biomaterials2021;271:120710

[167]

Shen J,Shu Y,Chen H.A robust ros generation strategy for enhanced chemodynamic/photodynamic therapy via H2O2/O2 self-supply and Ca2+ overloading.Adv Funct Mater2021;31:2106106

[168]

Song M,Tian Y.Sonoactivated chemodynamic therapy: a robust ros generation nanotheranostic eradicates multidrug-resistant bacterial infection.Adv Funct Mater2020;30:2003587

[169]

Huang C,Wang Y.Ultraweak chemiluminescence enhanced on the surface of lanthanide metal–organic framework nanosheets synthesized by ultrasonic wave.Appl Surf Sci2022;579:151860

[170]

Cao Z,Liang K.Biodegradable 2D Fe-Al hydroxide for nanocatalytic tumor-dynamic therapy with tumor specificity.Adv Sci2018;5:1801155 PMCID:PMC6247031

[171]

Li M,Tian R.Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors.J Am Chem Soc2018;140:14851-9

[172]

Wang Z,Ju E.Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors.Nat Commun2018;9:3334 PMCID:PMC6102211

[173]

Wu W,Jiang Q.Enhanced tumor-specific disulfiram chemotherapy by in situ Cu2+ chelation-initiated nontoxicity-to-toxicity transition.J Am Chem Soc2019;141:11531-9

[174]

Zuo W,Chang Z.Single-site bimetallic nanosheet for imaging guided mutually-reinforced photothermal-chemodynamic therapy.J Chem Eng2022;442:136125

[175]

Wang S,Hu S,Lin Y.Copper sulfide engineered covalent organic frameworks for pH-responsive chemo/photothermal/chemodynamic synergistic therapy against cancer.J Chem Eng2023;451:138864

[176]

Bharathiraja S,Moorthy MS,Lee KD.Chlorin e6 conjugated copper sulfide nanoparticles for photodynamic combined photothermal therapy.Photodiagnosis Photodyn Ther2017;19:128-34

[177]

Nikam AN,Fernandes G.Copper sulphide based heterogeneous nanoplatforms for multimodal therapy and imaging of cancer: Recent advances and toxicological perspectives.Coord Chem Rev.2020;419:213356

[178]

Han L,Chen XW,Wang JH.Protein-modified hollow copper sulfide nanoparticles carrying indocyanine green for photothermal and photodynamic therapy.J Mater Chem B2016;4:105-12

[179]

Liu W,Tan M.Nanomedicine enables drug-potency activation with tumor sensitivity and hyperthermia synergy in the second near-infrared biowindow.ACS Nano2021;15:6457-70

[180]

Chen L,Wang C.Tumor-targeted drug and CpG delivery system for phototherapy and docetaxel-enhanced immunotherapy with polarization toward M1-type macrophages on triple negative breast cancers.Adv Mater2019;31:e1904997

[181]

Ricciardi V,Lasalvia M.Evaluation of proton-induced biomolecular changes in MCF-10A breast cells by means of FT-IR microspectroscopy.Appl Sci2022;12:5074

[182]

Qi J,Tang X.Effect of spatial distribution of boron and oxygen concentration on DNA damage induced from boron neutron capture therapy using Monte Carlo simulations.Int J Radiat Biol2021;97:986-96

[183]

Ganjeh Z, Eslami-kalantari M, Ebrahimi Loushab M, Mowlavi AA. Calculation of direct DNA damages by a new approach for carbon ions and protons using Geant4-DNA.Radiat Phys and Chem2021;179:109249

[184]

Zhao Y,Kankala RK,Chen AZ.Recent advances in combination of copper chalcogenide-based photothermal and reactive oxygen species-related therapies.ACS Biomater Sci Eng2020;6:4799-815

[185]

Zhou X,Zheng Y.Overcoming radioresistance in tumor therapy by alleviating hypoxia and using the HIF-1 inhibitor.ACS Appl Mater Interfaces2020;12:4231-40

[186]

Peng C,Chen Y.Hollow mesoporous tantalum oxide based nanospheres for triple sensitization of radiotherapy.ACS Appl Mater Interfaces2020;12:5520-30

[187]

Jiang W,Zhang T,Zhang H.An oxygen self-evolving, multistage delivery system for deeply located hypoxic tumor treatment.Adv Healthc Mater2020;9:e1901303

[188]

Yan T,Chen C.Synergistic photothermal cancer immunotherapy by Cas9 ribonucleoprotein-based copper sulfide nanotherapeutic platform targeting PTPN2.Biomaterials2021;279:121233

[189]

Li N,Yu Z.Nuclear-targeted photothermal therapy prevents cancer recurrence with near-infrared triggered copper sulfide nanoparticles.ACS Nano2018;12:5197-206

[190]

Jiang Y,Qi X,Wu Z.Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes.Nanomedicine2022;17:303-24

[191]

Kahlson MA.Copper-induced cell death.Science2022;375:1231-2

PDF

200

Accesses

0

Citation

Detail

Sections
Recommended

/