Recent advances in porous adsorbent assisted atmospheric water harvesting: a review of adsorbent materials

Shuai Zhang , Jingru Fu , Guolong Xing , Weidong Zhu , Teng Ben

Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (2) : 10

PDF
Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (2) :10 DOI: 10.20517/cs.2022.40
review-article

Recent advances in porous adsorbent assisted atmospheric water harvesting: a review of adsorbent materials

Author information +
History +
PDF

Abstract

Water shortage is an increasing threat to humankind. Porous sorbent assisted atmospheric water harvesting (psaAWH) has emerged as an effective technological countermeasure. In this review, we summarize the types of porous adsorbents used in psaAWH and provide an overview of their states of development. The water adsorption mechanism and the processes associated with each material are analyzed, and the application prospects of the adsorbents are evaluated. The effect of the inherent properties (pore size, functional group, etc.) of the adsorbent on the water harvesting performance is also discussed. Further, we focus on the water adsorption/desorption kinetics of the adsorbents and outline various methods to improve the kinetics. At this stage, there are many strategies for improving the kinetics of the adsorbent, which in turn influences the adsorption process and intra/inter-crystalline diffusion. However, there is still limited research on the transport of water molecules in microporous adsorbents for psaAWH. Thus, this aspect is re-examined herein from a new perspective (superfluidity) in the review. Based on the discussion, we can reasonably infer that water molecule superfluidity can exist in nanoconfined channels, thus promoting the rapid transport of water molecules. The formation of water superfluidity is a feasible strategy for improving the intracrystalline diffusion of the psaAWH adsorbent. Finally, we consider the future developments and challenges of psaAWH in detail. We think this review can serve as a guide for further research in this ever-expanding field.

Keywords

Atmospheric water harvesting / porous adsorbent / kinetic process / superfluidity

Cite this article

Download citation ▾
Shuai Zhang, Jingru Fu, Guolong Xing, Weidong Zhu, Teng Ben. Recent advances in porous adsorbent assisted atmospheric water harvesting: a review of adsorbent materials. Chemical Synthesis, 2023, 3(2): 10 DOI:10.20517/cs.2022.40

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Oelkers EH,Zhu C.Water: is there a global crisis?.Elements2011;7:157-62

[2]

Ejeian M.Adsorption-based atmospheric water harvesting.Joule2021;5:1678-703

[3]

Gleick PH. Water in crisis: a guide to the world’s freshwater resources. Oxford University Press;1993. pp. 557.

[4]

Chen K,Shi W.Recent advances in water harvesting: a review of materials, devices and applications.Sustainability2022;14:6244

[5]

Liu X,Bourouina T.Water harvesting from air: current passive approaches and outlook.ACS Mater Lett2022;4:1003-24

[6]

Service RF.Desalination freshens up.Science2006;313:1088-90

[7]

Awual MR.Novel ligand functionalized composite material for efficient copper(II) capturing from wastewater sample.Composites Part B2019;172:387-96

[8]

Awual MR.Mesoporous composite material for efficient lead(II) detection and removal from aqueous media.J. Environ Chem Eng2019;7:103124

[9]

Salman MS,Hasan N.Optimization of innovative composite sensor for Pb(II) detection and capturing from water samples.Microchem J2021;160:105765

[10]

Shahat A,Salman MS,Hasan M.Novel solid-state sensor material for efficient cadmium(II) detection and capturing from wastewater.Microchem J2021;164:105967

[11]

Awual MR.A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater.Chem Eng J2015;266:368-75

[12]

Lord J,Treat N.Global potential for harvesting drinking water from air using solar energy.Nature2021;598:611-7

[13]

Hanikel N,Yaghi OM.MOF water harvesters.Nat Nanotechnol2020;15:348-55

[14]

Dods MN,Long JR.Prospects for simultaneously capturing carbon dioxide and harvesting water from air.Adv Mater2022;34:2204277

[15]

Lu H,Guo Y,Lei C.Materials engineering for atmospheric water harvesting: progress and perspectives.Adv Mater2022;34:2110079

[16]

Chen Z,Ma B.Recent progress on sorption/desorption-based atmospheric water harvesting powered by solar energy.Energy Mater Sol Cells2021;230:111233

[17]

Bagheri F.Performance investigation of atmospheric water harvesting systems.Water Resour Ind2018;20:23-8

[18]

Salehi AA,Torab-Mostaedi M,Asadollahzadeh M.A review on the water-energy nexus for drinking water production from humid air.Renew Sustain Energy Rev2020;120:109627

[19]

Furukawa H,Zhang Y-B.Water adsorption in porous metal-organic frameworks and related materials.J Am Chem Soc2014;136:4369-81

[20]

Xu W.Metal-organic frameworks for water harvesting from air, anywhere, anytime.ACS Cent Sci2020;6:1348-54

[21]

Byun Y,Talapaneni SN.Advances in porous organic polymers for efficient water capture.Chem Eur J2019;25:10262-83

[22]

Shi W,Lei C.Sorbents for atmospheric water harvesting: from design principles to applications.Angew Chem Int Ed2022;61:e202211267

[23]

Metrane A,Ouikhalfan M,Belmabkhout Y.Water vapor adsorption by porous materials: from chemistry to practical applications.J Chem Eng Data2022;67:1617-53

[24]

Shafeian N,Gorji TB.Progress in atmospheric water generation systems: a review.Renew Sust Energ Rev2022;161:112325

[25]

Li X,Xia Q.Effects of pore sizes of porous silica gels on desorption activation energy of water vapour.Appl Therm Eng2007;27:869-76

[26]

Fathieh F,Kapustin EA,Yang J.Practical water production from desert air.Sci Adv2018;4:eaat3198

[27]

Nguyen HL,Lyle SJ,Proserpio DM.A porous covalent organic framework with voided square grid topology for atmospheric water harvesting.J Am Chem Soc2020;142:2218-21

[28]

Yilmaz G,Lu W.Autonomous atmospheric water seeping MOF matrix.Sci Adv2020;6:eabc8605

[29]

Zhang S,Das S,Zhu W.Crystalline porous organic salt for ultrarapid adsorption/desorption-based atmospheric water harvesting by dual hydrogen bond system.Angew Chem Int Ed2022;61:e202208660

[30]

Tang S-Y,Yuan Y-F.Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting.New Carbon Mater2022;37:237-44

[31]

Bulang WG.Solar water recovery from the air.Solar Energy Int Prog1938;3:1526-45

[32]

Aristov TI,Gordeeva LG,Parmon VN.New composite sorbents for solar-driven technology of fresh water production from the atmosphere.Solar Energy1999;66:165-8

[33]

Ji JG,Li LX.New composite adsorbent for solar-driven fresh water production from the atmosphere.Desalination2007;212:176-82

[34]

Kim H,Rao R.Water harvesting from air with metal-organic frameworks powered by natural sunlight.Science2017;356:430-4

[35]

Kallenberger PA.Water harvesting from air with a hygroscopic salt in a hydrogel-derived matrix.Commun Chem2018;28:1

[36]

Li R,Alsaedi M,Shi L.Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator.Environ Sci Technol2018;52:11367-77

[37]

Matsumoto K,Miyata T.Thermo-responsive gels that absorb moisture and ooze water.Nat Commun2018;9:2315

[38]

Lu Z,Xia Z.Appl Therm Eng 2013;50:1015-20.

[39]

Tashiro Y,Katsumi Y,Komeya K.Assessment of adsorption-desorption characteristics of adsorbents for adsorptive desiccant cooling system.J Mater Sci2004;39:1315-9

[40]

Ng KC,Chung CY.Experimental investigation of the silica gel-water adsorption isotherm characteristics.Appl Therm Eng2001;21:1631-42

[41]

Ng EP.Nanoporous materials with enhanced hydrophilicity and high water sorption capacity.Micropor Mesopor Mater2008;114:1-26

[42]

Resasco DE,Wang B.Interaction of water with zeolites: a review.Catal Rev Sci Eng2021;63:302-62

[43]

Wu WD,Men CL.Performance of a modified zeolite 13X-water adsorptive cooling module powered by exhaust waste heat.Int J Therm Sci2011;50:2042-9

[44]

Henninger SK,Gordeeva L.New materials for adsorption heat transformation and storage.Renew Energy2017;110:59-68

[45]

Wynnyk KG,Marriott RA.High-pressure sour gas and water adsorption on zeolite 13X.Ind Eng Chem Res2018;57:15357-65

[46]

Wynnyk KG,Marriott RA.Sour gas and water adsorption on common high-pressure desiccant materials: zeolite 3A, zeolite 4A, and silica gel.J Chem Eng Data2019;64:3156-63

[47]

Krajnc A,Mazaj M,Logar NZ.Superior performance of microporous aluminophosphate with LTA topology in solar-energy storage and heat reallocation.Adv Energy Mater2017;7:1601815

[48]

Kloprogge JT,Frost RL.A review of the synthesis and characterisation of pillared clays and related porous materials for cracking of vegetable oils to produce biofuels.Environ Geol2005;47:967

[49]

Zhu HY,Vansant EF.The porosity and water adsorption of alumina pillared montmorillonite.J Colloid Interf Sci1995;171:377

[50]

Aso M,Sugino H.Thermal behavior, structure, and dynamics of low-temperature water confined in mesoporous organosilica by differential scanning calorimetry, X-ray diffraction, and quasi-elastic neutron scattering.Pure Appl Chem2013;85:289-305

[51]

Mietner JB,Lee YJ.Properties of water confined in periodic mesoporous organosilicas: nanoimprinting the local structure.Angew Chem Int Ed2017;56:12348-51

[52]

Furukawa H,O’Keeffe M.The chemistry and applications of metal-organic frameworks.Science2013;341:1230444

[53]

Yaghi OM,Li H.Selective binding and removal of guests in a microporous metal-organic framework.Nature1995;378:703-6

[54]

Wang Q.State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis.Chem Rev2020;120:1438-511

[55]

Qian Q,Lee MJ.MOF-based membranes for gas separations.Chem Rev2020;120:8161-266

[56]

Xie S,Wan K.Cathodic electrodeposition of MOF films using hydrogen peroxide.Angew Chem Int Ed2021;60:24950-7

[57]

Gutiérrez M,Tan JC.Confinement of luminescent guests in metal-organic frameworks: understanding pathways from synthesis and multimodal characterization to potential applications of LG@MOF systems.Chem Rev2022;122:10438-83

[58]

Terzopoulou A,Chen XZ,Pané S.Metal-organic frameworks in motion.Chem Rev2020;120:11175-93

[59]

He B,Pan Z.Freestanding metal-organic frameworks and their derivatives: an emerging platform for electrochemical energy storage and conversion.Chem Rev2022;122:10087-125

[60]

Peng Y,Huang H.Customization of functional MOFs by a modular design strategy for target applications.Chem Synth2022;2:15

[61]

Li H,Wang Y.Selenium confined in ZIF-8 derived porous carbon@MWCNTs 3D networks: tailoring reaction kinetics for high performance lithium-selenium batteries.Chem Synth2022;2:8

[62]

Nijem N,Kaipa U.Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal-organic framework.J Am Chem Soc2013;135:12615-26

[63]

Nguyen JG.Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification.J Am Chem Soc2010;132:4560-1

[64]

Zhang JP,Lin RB,Chen XM.Pore surface tailored SOD-type metal-organic zeolites.Adv Mater2011;23:1268-71

[65]

Yang Q,Ragon F.A water stable metal-organic framework with optimal features for CO2 capture.Angew Chem Int Ed2013;52:10316-20

[66]

Seo YK,Lee JS.Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced water adsorbents.Adv Mater2012;24:806-10

[67]

Wade CR,Narayan TC.Postsynthetic tuning of hydrophilicity in pyrazolate MOFs to modulate water adsorption properties.Energy Environ Sci2013;6:2172-7

[68]

Wagner JC,Paesani F.Water capture mechanisms at zeolitic imidazolate framework interfaces.J Am Chem Soc2021;143:21189-94

[69]

Choi HJ,Dailly A.Hydrogenstorage in water-stable metal-organic frameworks incorporating 1,3- and 1,4-benzenedipyrazolate.Energy Environ Sci2010;3:117-23

[70]

Banerjee R,Wang B.High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture.Science2008;319:939-43

[71]

Park KS,Côté AP.Exceptional chemical and thermal stability of zeolitic imidazolate frameworks.Proc Natl Acad Sci USA2006;103:10186-91

[72]

Tian D,Xie ZJ.The first example of hetero-triple-walled metal-organic frameworks with high chemical stability constructed via flexible integration of mixed molecular building blocks.Adv Sci2016;3:1500283

[73]

Férey G,Serre C.A chromium terephthalate-based solid with unusually large pore volumes and surface area.Science2005;309:2040-2

[74]

Chen Z,Zhang X.Reticular access to highly porous acs-MOFs with rigid trigonal prismatic linkers for water sorption.J Am Chem Soc2019;141:2900-5

[75]

Canivet J,Guo Y,Farrusseng D.Water adsorption in MOFs: fundamentals and applications.Chem Soc Rev2014;43:5594-617

[76]

Liu X,Kapteijn F.Water and metal-organic frameworks: from interaction toward utilization.Chem Rev2020;120:8303-77

[77]

Dietzel PDC,Blom R.Structural changes and coordinatively unsaturated metal atoms on dehydration of honeycomb analogous microporous metal-organic frameworks.Chem Eur J2008;14:2389-97

[78]

Ko N,Hong J.Tailoring the water adsorption properties of MIL-101 metal-organic frameworks by partial functionalization.J Mater Chem A2015;3:2057-64

[79]

Hanikel N,Chheda S.Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting.Science2021;374:454-9

[80]

Akiyama G,Sato H,Takata M.Effect of functional groups in MIL-101 on water sorption behavior.Micropor Mesopor Mater2012;157:89-93

[81]

Deria P,Snurr RQ,Farha OK.Water stabilization of Zr6-based metal-organic frameworks via solvent-assisted ligand incorporation.Chem Sci2015;6:5172-6

[82]

Laha S.Binary/Ternary MOF nanocomposites for multi-environment indoor atmospheric water harvesting.Adv Funct Mater2022;32:2203093

[83]

Xu J,Chao J.Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt.Angew Chem Int Ed2020;59:5202-10

[84]

Hu Y,Wan X.Carbon nanotubes decorated hollow metal-organic frameworks for efficient solar-driven atmospheric water harvesting.Chem Eng J2022;430:133086

[85]

Abtab SMT,Bhatt PM.Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in adsorbed water.Chem2018;4:94-105

[86]

Wu Q,Li Q,Li H.Enabling continuous and improved solar-driven atmospheric water harvesting with Ti3C2-incorporated metal-organic framework monoliths.ACS Appl Mater Interf2021;13:38906-15

[87]

Rieth AJ,Skorupskii G.Hendon CH, Dincă M. Record-setting sorbents for reversible water uptake by systematic anion exchanges in metal-organic frameworks.J Am Chem Soc2019;141:13858-66

[88]

Karmakar A,Bok I.Thermo-responsive MOF/polymer composites for temperature-mediated water capture and release.Angew Chem Int Ed2020;59:11003-9

[89]

Garzón-Tovar L,Imaz I.Composite salt in porous metal-organic frameworks for adsorption heat transformation.Adv Funct Mater2017;27:1606424

[90]

Permyakova A,Courbon E.Design of salt-metal organic framework composites for seasonal heat storage applications.J Mater Chem A2017;5:12889-98

[91]

Hanikel N,Fathieh F.Rapid cycling and exceptional yield in a metal-organic framework water harvester.ACS Cent Sci2019;5:1699-706

[92]

Wang L,An HT,Xie LH.A hydrolytically stable Cu(II)-based metal-organic framework with easily accessible ligands for water harvesting.ACS Appl Mater Interf2021;13:49509-18

[93]

Tao Y,Huang C.Sandwich-structured carbon paper/metal-organic framework monoliths for flexible solar-powered atmospheric water harvesting on demand.ACS Appl Mater Interf2022;14:10966-75

[94]

Geng K,Liu R.Covalent organic frameworks: design, synthesis, and functions.Chem Rev2020;120:8814-933

[95]

Côté AP,Ockwig NW,Matzger AJ.Porous, crystalline, covalent organic frameworks.Science2005;310:1166-70

[96]

Freund R,Arnauts G.The current status of MOF and COF applications.Angew Chem Int Ed2021;60:23975-4001

[97]

Das S,Ben T.Porous organic materials: strategic design and structure-function correlation.Chem Rev2017;117:1515-63

[98]

Guan X,Fang Q.Design and applications of three dimensional covalent organic frameworks.Chem Soc Rev2020;49:1357-84

[99]

Stegbauer L,Jentys A.Tunable water and CO2 sorption properties in isostructural azine-based covalent organic frameworks through polarity engineering.Chem Mater2015;27:7874-81

[100]

Tan KT,Huang N.Water cluster in hydrophobic crystalline porous covalent organic frameworks.Nat Commun2021;12:6747

[101]

Biswal BP,Chandra S.Pore surface engineering in porous, chemically stable covalent organic frameworks for water adsorption.J Mater Chem A2015;3:23664-9

[102]

Chen Y,Wei L.Guest-dependent dynamics in a 3D covalent organic framework.J Am Chem Soc2019;141:3298-303

[103]

Pérez-Carvajal J,Imaz I.The imine-based COF TpPa-1 as an efficient cooling adsorbent that can be regenerated by heat or light.Adv Energy Mater2019;9:1901535

[104]

Wang X,Chong SY.Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water.Nat Chem2018;10:1180-9

[105]

Ma J,Li Y,Pan L.Solid-state NMR study of adsorbed water molecules in covalent organic framework materials.Micropor Mesopor Mater2020;305:110287

[106]

Li W,Li S.Screening of covalent-organic frameworks for adsorption heat pumps.ACS Appl Mater Interf2020;12:3265-73

[107]

Gilmanova L,Shupletsov L.Chemically stable carbazole-based imine covalent organic frameworks with acidochromic response for humidity control applications.J Am Chem Soc2021;143:18368-73

[108]

Karak S,Biswal BP.Constructing ultraporous covalent organic frameworks in seconds via an organic terracotta process.J Am Chem Soc2017;139:1856-62

[109]

Jiang S,Ma W.Dual-functional two-dimensional covalent organic frameworks for water sensing and harvesting.Mater Chem Front2021;5:4193-201

[110]

Nguyen HL,Hanikel N,Lund A.Hydrazine-hydrazide-linked covalent organic frameworks for water harvesting.ACS Cent Sci2022;8:926-32

[111]

Vermonden T,Hennink WE.Hydrogels for protein delivery.Chem Rev2012;112:2853-88

[112]

Deng F,Wang C,Poredoš P.Wang R. Hygroscopic porous polymer for sorption-based atmospheric water harvesting.. Adv Sci2022;9:2204724

[113]

Guo Y,Fang Z,Zhao F.Hydrogels and hydrogel-derived materials for energy and water sustainability.Chem Rev2020;120:7642-707

[114]

Nandakumar DK,Ravi SK,Zhang C.Solar energy triggered clean water harvesting from humid air existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity.Adv Mater2019;31:1806730

[115]

Yang L,Nandakumar DK.A hybrid artificial photocatalysis system splits atmospheric water for simultaneous dehumidification and power generation.Adv Mater2019;31:1902963

[116]

Zhao F,Liu Y,Dai Y.Super moisture-absorbent gels for all-weather atmospheric water harvesting.Adv Mater2019;31:1806446

[117]

Yang J,Qu H.A moisture-hungry copper complex harvesting air moisture for potable water and autonomous urban agriculture.Adv Mater2020;32:2002936

[118]

Lei C,Guan W,Shi W.Polyzwitterionic hydrogels for efficient atmospheric water harvesting.Angew Chem Int Ed2022;61:e202200271

[119]

Ni F,Zhang C.Hygroscopic polymer gels toward atmospheric moisture exploitations for energy management and freshwater generation.Matter2022;5:2624-58

[120]

Hou Y,Fu C,Zhang X.Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption.Nat Commun2022;13:1227

[121]

Chang X,Li N.Marine biomass-derived, hygroscopic and temperature-responsive hydrogel beads for atmospheric water harvesting and solar-powered irrigation.J Mater Chem A2022;10:18170-84

[122]

Ni F,Xiao P.Tillandsia-inspired hygroscopic photothermal organogels for efficient atmospheric water harvesting.Angew Chem Int Ed2020;59:19237-46

[123]

Aleid S,Li R.Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting.ACS Mater Lett2022;4:511-20

[124]

Entezari A,Wang R.Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts.ACS Mater Lett2020;2:471-7

[125]

Xu J,Yan T.Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent.Energy Environ Sci2021;14:5979-94

[126]

Lu K,Liu J.Hierarchical natural pollen cell-derived composite sorbents for efficient atmospheric water harvesting.ACS Appl Mater Interf2022;14:33032-40

[127]

Wang M,Wan D.Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting.Nano Energy2021;80:105569

[128]

Li R,Shi Y.Hybrid water vapor sorbent design with pollution shielding properties: extracting clean water from polluted bulk water sources.J Mater Chem A2021;9:14731-40

[129]

Yao H,Huang Y,Li C.Highly efficient clean water production from contaminated air with a wide humidity range.Adv Mater2020;32:1905875

[130]

Yu S,Chen LH,Su BL.Crystalline porous organic salts: from micropore to hierarchical pores.Adv Mater2020;32:2003270

[131]

Xing G,Bracco S.A double helix of opposite charges to form channels with unique CO2 selectivity and dynamics.Chem Sci2019;10:730-6

[132]

Zhao Y,Pei C.Colossal negative linear compressibility in porous organic salts.J Am Chem Soc2020;142:3593-9

[133]

Comotti A,Yamamoto A.Engineering switchable rotors in molecular crystals with open porosity.J Am Chem Soc2014;136:618-21

[134]

Xiao W,Ward MD.Guest exchange through single crystal-single crystal transformations in a flexible hydrogen-bonded framework.J Am Chem Soc2014;136:14200-6

[135]

Liang WB,Solomon MB.Enzyme encapsulation in a porous hydrogen-bonded organic framework.J Am Chem Soc2019;141:14298-305

[136]

Ami T,Tsuchiya K.Porous organic salts: diversifying void structures and environments.Angew Chem Int Ed2022;61:e202202597

[137]

Boer SA,Tarzia A.Water sorption controls extreme single-crystal-to-single-crystal molecular reorganization in hydrogen bonded organic frameworks.Chem Eur J2022;28:e202201929

[138]

Xing G,Das S,Qiu S.Synthesis of crystalline porous organic salts with high proton conductivity.Angew Chem Int Ed2018;57:5345-49

[139]

Wang H,Mei S.Polymer-derived heteroatom-doped porous carbon materials.Chem Rev2020;120:9363-419

[140]

Lodewyckx P.The effect of water uptake in ultramicropores on the adsorption of water vapour in activated carbon.Carbon N Y2010;48:2549-53

[141]

Tao Y,Endo M.Evidence of water adsorption in hydrophobic nanospaces of highly pure double-walled carbon nanotubes.J Am Chem Soc2010;132:1214-5

[142]

Yuan M,Shi Q.Understanding the characteristics of water adsorption in zeolitic imidazolate framework-derived porous carbon materials.Chem Eng J2020;379:122412

[143]

Zhang E,Casco ME,Grätz S.Nanocasting in ball mills - combining ultra-hydrophilicity and ordered mesoporosity in carbon materials.J Mater Chem A2018;6:859-65

[144]

Liu L,Horikawa T,Nicholson D.Water adsorption on carbon - a review.Adv Colloid Interf Sci2017;250:64-78

[145]

Hao G-P,Zheng Z.Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture.Angew Chem Int Ed2015;54:1941-5

[146]

Entezari A,Wang RZ.Extraordinary air water harvesting performance with three phase sorption.Mater Today Energy2019;13:362-73

[147]

Li R,Wu M,Wang P.Improving atmospheric water production yield: enabling multiple water harvesting cycles with nano sorbent.Nano Energy2020;67:104255

[148]

Legrand U,Watson S.Nanoporous sponges as carbon-based sorbents for atmospheric water generation.Ind Eng Chem Res2021;60:12923-12933

[149]

Kumar KV,Guo ZX.Understanding the hydrophilicity and water adsorption behavior of nanoporous nitrogen-doped carbons.J Phys Chem C2016;120:18167-79

[150]

Byun Y.Epoxy-functionalized porous organic polymers via the diels-alder cycloaddition reaction for atmospheric water capture.Angew Chem Int Ed2018;57:3173-7

[151]

Song Y,Liu G.High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels.Nat Nanotechnol2022;17:857-63

[152]

Guo Y,Lei C,Shi W.Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments.Nat Commun2022;13:2761

[153]

Wright AM,Yang S,Dincă M.Precise control of pore hydrophilicity enabled by post-synthetic cation exchange in metal-organic frameworks.Chem Sci2018;9:3856-9

[154]

Wang H,Woon R,Diao Y.Microtubular PEDOT-coated bricks for atmospheric water harvesting.ACS Appl Mater Interf2021;13:34671-8

[155]

Furukawa H,Go YB.Ultrahigh porosity in metal-organic frameworks.Science2010;329:424-8

[156]

Hu Y,Wan X.Ferrocene dicarboxylic acid ligand-exchanged hollow MIL-101(Cr) nanospheres for solar-driven atmospheric water harvesting.ACS Sustain Chem Eng2022;10:6446-55

[157]

Wang J,Zhong G.High-yield and scalable water harvesting of honeycomb hygroscopic polymer driven by natural sunlight.Cell Rep Phys Sci2022;3:100954

[158]

Zhang Z,Li Z.Hydrogel materials for sustainable water resources harvesting & treatment: synthesis, mechanism and applications.Chem Eng J2022;439:135756

[159]

Li J,Vlassak J.Experimental determination of equations of state for ideal elastomeric gels.Soft Matter2012;8:8121

[160]

Taheri E,Lima EC.High surface area acid-treated biochar from pomegranate husk for 2,4-dichlorophenol adsorption from aqueous solution.Chemosphere2022;295:133850

[161]

Messaoudi NE,Fernine Y.Hydrothermally engineered Eriobotrya japonica leaves/MgO nanocomposites with potential applications in wastewater treatment.Groundw Sustain Dev2022;16:100728

[162]

LaPotin A,Rao SR.Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance.Acc Chem Res2019;52:1588-97

[163]

Dehmani Y,Lamhasni T,Chtourou R.Review of phenol adsorption on transition metal oxides and other adsorbents.J Water Process Eng2022;49:102965

[164]

Bilal M,Morosuk T.Adsorption-based atmospheric water harvesting: a review of adsorbents and systems.Int Commun Heat Mass Transf2022;133:105961

[165]

Kim S,Kang S.Solar-assisted smart nanofibrous membranes for atmospheric water harvesting.Chem Eng J2021;425:131601

[166]

Lyu T,Liu R,Liu H.Macroporous hydrogel for high-performance atmospheric water harvesting.ACS Appl Mater Interf2022;14:32433-43

[167]

Chen H,Gan Y.Ultrafast water harvesting and transport in hierarchical microchannels.Nat Mater2018;17:935-42

[168]

Wang H-J,McNicholas TP,Wu Y.Water adsorption in nanoporous carbon characterized by in situ NMR: measurements of pore size and pore size distribution.J Phys Chem C2014;118:8474-80

[169]

Zhang X,Jiang L.From dynamic superwettability to ionic/molecular superfluidity.Acc Chem Res2022;55:1195-204

[170]

Kapitza P.Viscosity of liquid helium below the λ-point.Nature1938;141:74

[171]

Allen JF.Flow of liquid helium II.Nature1938;141:75

[172]

Gasparini FM,Mooney KP.Finite-size scaling of He 4 at the superfluid transition.Rev Mod Phys2008;80:1009

[173]

Kolomeisky AB.Channel-facilitated molecular transport across membranes: attraction, repulsion, and asymmetry.Phys Rev Lett2007;98:048105

[174]

Zhang X,Jiang L.Driving force of molecular/ionic superfluid formation.CCS Chem2021;3:1258-66

[175]

Wu K,Li J,Xu J.Wettability effect on nanoconfined water flow.Proc Natl Acad Sci USA2017;114:3358-63

[176]

Yaghi OM,Hanikel N,Fathieh F.Available from: https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2020036905 [Last accessed on 20 Feb 2023]Active atmospheric moisture harvester.

[177]

Yaghi OM,Kalmutzki MJ.Available from: https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2019152962&_cid=JP1-LEC9J1-00905-1 [Last accessed on 20 Feb 2023]Atmospheric moisture harvester.

[178]

Kim H,Rao SR.Available from: https://patentscope2.wipo.int/search/en/detail.jsf?docId=US249457722&_cid=JP1-LEC9LR-04379-1 [Last accessed on 20 Feb 2023]Sorption-based atmospheric water harvesting device.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/