Selenium nanomaterials enabled flexible and wearable electronics

Chao Dang , Mingyang Liu , Zhiwei Lin , Wei Yan

Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (2) : 14

PDF
Chemical Synthesis ›› 2023, Vol. 3 ›› Issue (2) :14 DOI: 10.20517/cs.2022.33
review-article

Selenium nanomaterials enabled flexible and wearable electronics

Author information +
History +
PDF

Abstract

Selenium (Se), as an intriguing chalcogenide semiconductor, has traditionally been used for solar energy harvesting. The recent development of nanoscience and nanotechnology has enabled a myriad of Se nanomaterials with compelling structures and unique features. Compared with other chalcogens, Se nanomaterials possess anisotropic crystalline structure, intrinsic chirality, and high reactivity, as well as unique optical, electrical, photoconductive, and piezoelectrical properties. The integration of these Se nanomaterials with technologically important materials, such as conductors and semiconductors, over flexible, bendable, stretchable, and highly curved substrates offer a new generation of Se nanomaterial-based flexible and wearable electronics. In this mini review, we survey the recent scientific and technological breakthroughs in Se nanomaterials-enabled flexible and wearable electronics. We highlight the synthesis, fabrication, morphologies, structure, and properties (optical, electrical, optoelectrical, photovoltaic, and piezoelectric) of Se nanomaterials as well as their integration into innovative functional devices that deliver higher forms of applications across smart sensing, health care, and energy domains. We conclude with a critical analysis of existing challenges and opportunities that will trigger the continued progress of the field.

Keywords

Selenium / Nanomaterials / Flexible electronics / Wearable electronics / Functional fibers

Cite this article

Download citation ▾
Chao Dang, Mingyang Liu, Zhiwei Lin, Wei Yan. Selenium nanomaterials enabled flexible and wearable electronics. Chemical Synthesis, 2023, 3(2): 14 DOI:10.20517/cs.2022.33

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yan W,Loke G.Single fibre enables acoustic fabrics via nanometre-scale vibrations.Nature2022;603:616-23

[2]

Yan W,Xiang Y.Thermally drawn advanced functional fibers: new frontier of flexible electronics.Mater Today2020;35:168-94

[3]

Zeng W,Li Q,Wang F.Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.Adv Mater2014;26:5310-36

[4]

Leber A,Chandran R,Bartolomei N.Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations.Nat Electron2020;3:316-26

[5]

Song W.A smart sensor that can be woven into everyday life.Nature2022;603:585-6

[6]

Du M,Zheng J.Flexible fiber probe for efficient neural stimulation and detection.Adv Sci (Weinh)2020;7:2001410 PMCID:PMC7404151

[7]

Weng W,Zhang Y.A route toward smart system integration: from fiber design to device construction.Adv Mater2020;32:e1902301

[8]

Loke G,Yan W.Computing fabrics.Matter2020;2:786-8

[9]

Liu M,Wang X.Focused rotary jet spinning: a novel fiber technology for heart biofabrication.Matter2022;5:3576-9

[10]

Jiang S,Kim J.Spatially expandable fiber-based probes as a multifunctional deep brain interface.Nat Commun2020;11:6115 PMCID:PMC7704647

[11]

Xu B,Xiang Y.In-fiber structured particles and filament arrays from the perspective of fluid instabilities.Adv Fiber Mater2020;2:1-12

[12]

Pan S.Nanoprocessed silk makes skin feel cool.Adv Fiber Mater2022;4:319-20

[13]

Wang H,Liang X.Smart fibers and textiles for personal health management.ACS Nano2021;15:12497-508

[14]

Zhang T,Zhang J.High-performance, flexible, and ultralong crystalline thermoelectric fibers.Nano Energy2017;41:35-42

[15]

Martin-monier L,Yan W,Sorin F.Nanoscale controlled oxidation of liquid metals for stretchable electronics and photonics.Adv Funct Mater2021;31:2006711

[16]

Pan S.Fiber electronics bring a new generation of acoustic fabrics.Adv Fiber Mater2022;4:321-3

[17]

Qian S,Dou Y,Yan W.A ‘Moore’s law’ for fibers enables intelligent fabrics.Natl Sci Rev2023;10:nwac202 PMCID:PMC9843301

[18]

Loke G,Wang B.Digital electronics in fibres enable fabric-based machine-learning inference.Nat Commun2021;12:3317 PMCID:PMC8175338

[19]

Kim J.From space to battlefield: a new breed of multifunctional fiber sheets for extreme environments.Matter2020;3:602-4

[20]

Cao Y,Allec SI,Nguyen DS.A highly stretchy, transparent elastomer with the capability to automatically self-heal underwater.Adv Mater2018;30:e1804602

[21]

Hou C,Wei L.Crystalline silicon core fibres from aluminium core preforms.Nat Commun2015;6:6248

[22]

Wei L,Levy E.Optoelectronic fibers via selective amplification of in-fiber capillary instabilities.Adv Mater2017;29:1603033

[23]

Qu Y,Page AG.Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing.Adv Mater2018;30:e1707251

[24]

Yan W,Das Gupta T,Sorin F.Direct synthesis of selenium nanowire mesh on a solid substrate and insights into ultrafast photocarrier dynamics.J Phys Chem C2018;122:25134-41

[25]

Chin AL,Jang E.Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement.Nat Commun2021;12:5138 PMCID:PMC8390758

[26]

Dong C,Das Gupta T.High-efficiency super-elastic liquid metal based triboelectric fibers and textiles.Nat Commun2020;11:3537 PMCID:PMC7363815

[27]

Cao Y,Acome E.A Transparent, self-healing, highly stretchable ionic conductor.Adv Mater2017;29:1605099

[28]

Yan W,Kurtuldu G.Structured nanoscale metallic glass fibres with extreme aspect ratios.Nat Nanotechnol2020;15:875-82

[29]

Nguyen-dang T,Yan W.Controlled sub-micrometer hierarchical textures engineered in polymeric fibers and microchannels via thermal drawing.Adv Funct Mater2017;27:1605935

[30]

Zhang Y,Kim J.Thermally drawn stretchable electrical and optical fiber sensors for multimodal extreme deformation sensing.Adv Optical Mater2021;9:2001815

[31]

Jiang S,Zhang Y.Nano-optoelectrodes integrated with flexible multifunctional fiber probes by high-throughput scalable fabrication.ACS Appl Mater Interfaces2021;13:9156-65

[32]

Das Gupta T,Yan W.Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities.Nat Nanotechnol2019;14:320-7

[33]

Kim J,Yang S.Laser machined fiber-based microprobe: application in microscale electroporation.Adv Fiber Mater2022;4:859-72

[34]

Dong C,Yan W,Sorin F.Microstructured multimaterial fibers for microfluidic sensing.Adv Mater Technol2019;4:1900417

[35]

Grena B,Levy E,Joannopoulos JD.Thermally-drawn fibers with spatially-selective porous domains.Nat Commun2017;8:364 PMCID:PMC5573721

[36]

Sun H,Li Y.Large-area supercapacitor textiles with novel hierarchical conducting structures.Adv Mater2016;28:8431-8

[37]

Khudiyev T,Cox JR.100 m long thermally drawn supercapacitor fibers with applications to 3D printing and textiles.Adv Mater2020;32:e2004971

[38]

Zhang J,Zhang H.Single-crystal snse thermoelectric fibers via laser-induced directional crystallization: from 1d fibers to multidimensional fabrics.Adv Mater2020;32:e2002702

[39]

Yan W,Gupta TD.Semiconducting nanowire-based optoelectronic fibers.Adv Mater2017;29:1700681

[40]

Hou C,Wei L.Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing.Nano Lett2013;13:975-9

[41]

Zhang H,Zheng D.Broadband photodetector based on vapor-deposited selenium self-supporting films.Ceramics International2022;48:27750-7

[42]

Shalaev VM.Physics Transforming light.Science2008;322:384-6

[43]

Hu K,Jiang M,Zheng L.Broadband photoresponse enhancement of a high-performance t -Se microtube photodetector by plasmonic metallic nanoparticles.Adv Funct Mater2016;26:6641-8

[44]

Kumar M,Adhikari N,Qiao Q.Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS-Se solar cells.Energy Environ Sci2015;8:3134-59

[45]

Wang S,Zhou P.The road for 2D semiconductors in the silicon age.Adv Mater2022;34:e2106886

[46]

Kang SK,Kim K.Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics.ACS Appl Mater Interfaces2015;7:9297-305

[47]

Khalid A,Norello R,O’Connor AJ.Intrinsic fluorescence of selenium nanoparticles for cellular imaging applications.Nanoscale2016;8:3376

[48]

Ramírez-montes L,González-hernández R.Large thermoelectric figure of merit in hexagonal phase of 2D selenium and tellurium.Int J Quantum Chem2020;120

[49]

Qin JK,Wang J.Anisotropic signal processing with trigonal selenium nanosheet synaptic transistors.ACS Nano2020;14:10018-26

[50]

Huang W,Hu L,Xie Z.Recent advances in semiconducting monoelemental selenium nanostructures for device applications.Adv Funct Mater2020;30:2003301

[51]

Kumar A,Goia DV.Synthesis of selenium particles with various morphologies.J Colloid Interf Sci2014;416:119-123

[52]

Gao X,Zhang L.Hollow sphere selenium nanoparticles: their in-vitro anti hydroxyl radical effect.Adv Mater2002;14:290-3

[53]

Zhang J,Fan L,Liang J.Graphene-encapsulated selenium/polyaniline core-shell nanowires with enhanced electrochemical performance for Li-Se batteries.Nano Energy2015;13:592-600

[54]

Zhu Y.Preparation of powders of selenium nanorods and nanowires by microwave-polyol method.Mater Lett2004;58:1234-6

[55]

Xi G,Zhao Q,Zhang H.Nucleation-dissolution-recrystallization:  a new growth mechanism for t -selenium nanotubes.2006;6:577-82

[56]

Ma Y,Shen W.Selective synthesis of single-crystalline selenium nanobelts and nanowires in micellar solutions of nonionic surfactants.Langmuir2005;21:6161-4

[57]

Qin J,Jian J.Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications.ACS Nano2017;11:10222-9

[58]

Xing C,Liang Z.2D Nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics.Adv Optical Mater2017;5:1700884

[59]

Shi Z,Khan K,Xu K.Two-dimensional selenium and its composites for device applications.Nano Res2022;15:104-22

[60]

Liu C,Wu Y B.2D selenium allotropes from first principles and swarm intelligence.J Phys Condens Matter2019;31:235702

[61]

Xian L,Bianco E,Rubio A.Square selenene and tellurene: novel group VI elemental 2D materials with nontrivial topological properties.2D Mater2017;4:041003

[62]

Degtyareva O,Somayazulu M,Hemley RJ.Crystal structure of the superconducting phases of S and Se.Phys Rev B2005;71:214104

[63]

Cherin P.The crystal structure of trigonal selenium.Inorg Chem1967;6:1589-91

[64]

Anupama K,Mary KAA.Solid-state fluorescent selenium quantum dots by a solvothermal assisted sol-gel route for curcumin sensing.ACS Omega2021;6:21525-33 PMCID:PMC8388070

[65]

Ayyyzhy KO,Gudkov SV,Simakin AV.Laser fabrication and fragmentation of selenium nanoparticles in aqueous media.Phys Wave Phen2019;27:113-8

[66]

Salazar-alvarez G,Zagorodni AA.Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution.Chem Eng Sci2006;61:4625-33

[67]

Basak S,Biswas P.Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law.Chem Eng Sci2007;62:1263-8

[68]

Gates B,Cattle B.Synthesis and characterization of uniform nanowires of trigonal selenium.Adv Funct Mater2002;12:219

[69]

Chen YZ,Chen PJ.Environmentally and mechanically stable selenium 1D/2D hybrid structures for broad-range photoresponse from ultraviolet to infrared wavelengths.ACS Appl Mater Interfaces2018;10:35477-86

[70]

Yaman M,Ozgur E.Arrays of indefinitely long uniform nanowires and nanotubes.Nat Mater2011;10:494-501

[71]

Kasirga TS.Chemical vapor transport synthesis of a selenium-based two-dimensional material.Turk J Phys2018;42

[72]

Filippo E,Serra A.Characterization and growth mechanism of selenium microtubes synthesized by a vapor phase deposition route.2010;10:4890-7

[73]

Cheng M,Zhu Z.Large second-harmonic generation and linear electro-optic effect in trigonal selenium and tellurium.Phys Rev B2019;100

[74]

Jun SW,Kwon J,Kim C.Full-color laser displays based on optical second-harmonic generation from the thin film arrays of selenium nanowires.ACS Photonics2022;9:368-77

[75]

Gumennik A,Schell BR.All-in-fiber chemical sensing.Adv Mater2012;24:6005-9

[76]

Deng DS,Abouraddy AF.In-fiber semiconductor filament arrays.Nano Lett2008;8:4265-9

[77]

Yan W,Cayron C.Microstructure tailoring of selenium-core multimaterial optoelectronic fibers.Opt Mater Express2017;7:1388

[78]

Jiang X,Wang R.Photocarrier relaxation pathways in selenium quantum dots and their application in UV-Vis photodetection.Nanoscale2020;12:11232-41

[79]

Shin D,Huang X,Blum V.Earth-abundant chalcogenide photovoltaic devices with over 5% efficiency based on a Cu2 BaSn(S,Se)4 absorber.Adv Mater2017;29:1606945

[80]

Jayswal NK,Subedi B.Optical properties of thin film Sb2Se3 and identification of its electronic losses in photovoltaic devices.Solar Energy2021;228:38-44

[81]

Hadar I,Ke W.Modern processing and insights on selenium solar cells: the world’s first photovoltaic device.Adv Energy Mater2019;9:1802766

[82]

Liu SC,Min Y.An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics.Nat Commun2021;12:670 PMCID:PMC7844217

[83]

Seo Y,Jo Y.Facile microwave-assisted synthesis of multiphase CuInSe2 nanoparticles and role of secondary cuse phase on photovoltaic device performance.J Phys Chem C2013;117:9529-36

[84]

Ulaganathan RK,Sankar R,Chen Y.Hybrid InSe nanosheets and MoS2 quantum dots for high-performance broadband photodetectors and photovoltaic cells.Adv Mater Interfaces2019;6:1801336

[85]

Wu M,Gao S.Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring.Nano Energy2019;56:693-9

[86]

Harkin JM,Chesters G.Elevation of selenium levels in air by xerography.Nature1976;259:204-5

[87]

Zhu B,Wang Y.A highly selective and ultrasensitive ratiometric far-red fluorescent probe for imaging endogenous peroxynitrite in living cells.Sensor Actuat B-Chem2018;259:797-802

[88]

Manjare ST,Churchill DG.Selenium- and tellurium-containing fluorescent molecular probes for the detection of biologically important analytes.Acc Chem Res2014;47:2985-98

[89]

Triet Ho LT,Vasileska D.Modeling dark current conduction mechanisms and mitigation techniques in vertically stacked amorphous selenium-based photodetectors.ACS Appl Electron Mater2021;3:3538-46 PMCID:PMC9119575

[90]

Liao ZM,Liu LP.Temperature dependence of photoelectrical properties of single selenium nanowires.Nanoscale Res Lett2010;5:926-9 PMCID:PMC2894105

[91]

Luo LB,Chen ZH.Photoconductive properties of selenium nanowire photodetectors.J Nanosci Nanotechnol2009;9:6292-8

[92]

Akiyama N.A sensor array based on trigonal-selenium nanowires for the detection of gas mixtures.Sensor Actuat B-Chem2016;223:131-7

[93]

Yan W,Nguyen-Dang T.Advanced multimaterial electronic and optoelectronic fibers and textiles.Adv Mater2019;31:e1802348

[94]

Luo L,Liang F.Transparent and flexible selenium nanobelt-based visible light photodetector.CrystEngComm2012;14:1942

[95]

Ji L,Zheng H.Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells.J Am Chem Soc2011;133:18522-5

[96]

Bruce PG,Hardwick LJ.Li-O2 and Li-S batteries with high energy storage.Nat Mater2011;11:19-29

[97]

Luo C,Zhu Y.Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity.ACS Nano2013;7:8003-10

[98]

Guo J,Wang C.Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries.Nano Lett2011;11:4288-94

[99]

Abouimrane A,Chapman KW,Weng W.A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode.J Am Chem Soc2012;134:4505-8

[100]

Liu L,Wu X.Nanoporous selenium as a cathode material for rechargeable lithium-selenium batteries.Chem Commun (Camb)2013;49:11515-7

[101]

Yang CP,Yin YX,Zhang J.An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries.Angew Chem Int Ed Engl2013;52:8363-7

[102]

Zhang Z,Zhang K,Li Q.Improvement of electrochemical performance of rechargeable lithium-selenium batteries by inserting a free-standing carbon interlayer.RSC Adv2014;4:15489-92

[103]

Zeng L,Jiang Y.A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li-Se and Na-Se batteries.Adv Energy Mater2015;5:1401377

[104]

Han K,Ye H.Flexible self-standing graphene-Se@CNT composite film as a binder-free cathode for rechargeable Li-Se batteries.J Power Sources2014;263:85-9

[105]

Yuan B,Zeng L,Wang Q.A Freestanding and long-life sodium-selenium cathode by encapsulation of selenium into microporous multichannel carbon nanofibers.Small2018;14:1703252

[106]

Marion JS,Cheung H,Anikeeva P.Thermally drawn highly conductive fibers with controlled elasticity.Adv Mater2022;34:e2201081

[107]

Deng DS,Liang X,Fink Y.Exploration of in-fiber nanostructures from capillary instability.Opt Express2011;19:16273-90

[108]

Esposito W,Piveteau PL,Deng D.Controlled filamentation instability as a scalable fabrication approach to flexible metamaterials.Nat Commun2022;13:6154 PMCID:PMC9579152

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/