Two-dimensional materials: synthesis and applications in the electro-reduction of carbon dioxide

Yaoyu Yin , Xinchen Kang , Buxing Han

Chemical Synthesis ›› 2022, Vol. 2 ›› Issue (4) : 19

PDF
Chemical Synthesis ›› 2022, Vol. 2 ›› Issue (4) :19 DOI: 10.20517/cs.2022.20
review-article

Two-dimensional materials: synthesis and applications in the electro-reduction of carbon dioxide

Author information +
History +
PDF

Abstract

The emission of CO2 has become an increasingly prominent issue. Electrochemical reduction of CO2 to value-added chemicals provides a promising strategy to mitigate energy shortage and achieve carbon neutrality. Two-dimensional (2D) materials are highly attractive for the fabrication of catalysts owing to their special electronic and geometric properties as well as a multitude of edge active sites. Various 2D materials have been proposed for synthesis and use in the conversion of CO2 to versatile carbonous products. This review presents the latest progress on various 2D materials with a focus on their synthesis and applications in the electrochemical reduction of CO2. Initially, the advantages of 2D materials for CO2 electro-reduction are briefly discussed. Subsequently, common methods for the synthesis of 2D materials and the role of these materials in the electrochemical reduction of CO2 are elaborated. Finally, some perspectives for future investigations of 2D materials for CO2 electro-reduction are proposed.

Keywords

2D materials / material synthesis / electrochemical reduction of CO2

Cite this article

Download citation ▾
Yaoyu Yin, Xinchen Kang, Buxing Han. Two-dimensional materials: synthesis and applications in the electro-reduction of carbon dioxide. Chemical Synthesis, 2022, 2(4): 19 DOI:10.20517/cs.2022.20

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He M,Han B.Green carbon science: efficient carbon resource processing, utilization, and recycling towards carbon neutrality.Angew Chem Int Ed Engl2022;61:e202112835

[2]

Mehla S,Babarao R.Porous crystalline frameworks for thermocatalytic CO2 reduction: an emerging paradigm.Energy Environ Sci2021;14:320-52

[3]

Wu Y,Lu X,Wang H.Domino electroreduction of CO2 to methanol on a molecular catalyst.Nature2019;575:639-42

[4]

Yang HB,Liu S.Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction.Nat Energy2018;3:140-7

[5]

Li CW,Kanan MW.Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper.Nature2014;508:504-7

[6]

Li L,Sun Y.Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network.Chem Soc Rev2022;51:1234-52

[7]

Zhang J,Li Z.Neighboring Zn-Zr sites in a metal-organic framework for CO2 hydrogenation.J Am Chem Soc2021;143:8829-37

[8]

Koshy DM,Asundi AS.Bridging thermal catalysis and electrocatalysis: catalyzing CO2 conversion with carbon-based materials.Angew Chem Int Ed Engl2021;60:17472-80

[9]

Sun Q,Yu J.Advances in catalytic applications of zeolite-supported metal catalysts.Adv Mater2021;33:e2104442

[10]

Rao H,Bonin J.Visible-light-driven methane formation from CO2 with a molecular iron catalyst.Nature2017;548:74-7

[11]

Barman S,Rahimi FA.Metal-free catalysis: a redox-active donor-acceptor conjugated microporous polymer for selective visible-light-driven CO2 reduction to CH4.J Am Chem Soc2021;143:16284-92

[12]

Zhao W,Liu C.Unblocked intramolecular charge transfer for enhanced CO2 photoreduction enabled by an imidazolium-based ionic conjugated microporous polymer.Appl Catal B-environ2022;300:120719

[13]

Ozden A,Li F.Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene.Joule2021;5:706-19

[14]

Qiu XF,Huang JR,Chen XM.Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites.J Am Chem Soc2021;143:7242-6

[15]

Ma W,Liu T.Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper.Nat Catal2020;3:478-87

[16]

Cheng Y,Wang X.CO2 electrolysis system under industrially relevant conditions.Acc Chem Res2022;55:231-40

[17]

Gao D,Li H,Wang G.Designing electrolyzers for electrocatalytic CO2 reduction.Acta Phys-Chim Sin2021;37:2009021

[18]

Li N,Wu Q,Huang Y.Boosting electrocatalytic CO2 reduction with conjugated bimetallic CO/Zn polyphthalocyanine frameworks. CCS Chem 2022

[19]

Jia S,Sun X.Electrochemical transformation of CO2 to value-added chemicals and fuels.CCS Chem2022;4:3213-29

[20]

Cheng Y,Pan H,Kang P.Selective electrocatalytic reduction of carbon dioxide to oxalate by lead tin oxides with low overpotential.Appl Catal B-environ2020;272:118954

[21]

Yang D,Han B.Electroreduction of CO2 in ionic liquid-based electrolytes.Innovation2020;1:100016 PMCID:PMC8454664

[22]

Schwarz HA.Reduction potentials of CO2- and the alcohol radicals.J Phys Chem1989;93:409-14

[23]

Zhao K.Carbon-based materials for electrochemical reduction of CO2 to C2+ oxygenates: recent progress and remaining challenges.ACS Catal2021;11:2076-97

[24]

Cheng Y,Kang P.Integrated capture and electroreduction of flue gas CO2 to formate using amine functionalized SnOx nanoparticles.ACS Energy Lett2021;6:3352-8

[25]

Chang C,Chen Y.Recent progress on two-dimensional materials.Acta Phys-Chim Sin2021;37:2108017

[26]

Fu Q,Tang X,Chen M.Multifunctional two-dimensional polymers for perovskite solar cells with efficiency exceeding 24%.ACS Energy Lett2022;7:1128-36

[27]

Song D,Lin Z.Usability identification framework and high-throughput screening of two-dimensional materials in lithium ion batteries.ACS Nano2021;15:16469-77

[28]

Wang J,Sugahara Y.Electrochemical energy storage performance of 2D nanoarchitectured hybrid materials.Nat Commun2021;12:3563 PMCID:PMC8196154

[29]

Liang Q,Zhao X,Wee ATS.Defect engineering of two-dimensional transition-metal dichalcogenides: applications, challenges, and opportunities.ACS Nano2021;15:2165-81

[30]

Shamzhy M,Opanasenko M,Čejka J.MWW and MFI frameworks as model layered zeolites: structures, transformations, properties, and activity.ACS Catal2021;11:2366-96

[31]

Xu L,Shen Y.Rational manipulation of stacking arrangements in three-dimensional zeolites built from two-dimensional zeolitic nanosheets.Angew Chem Int Ed Engl2020;59:19934-9

[32]

Li G,Zhao S.Construction of rGO-SnO2 heterojunction for enhanced hydrogen detection.Appl Surf Sci2022;585:152623

[33]

Li S,Udvarhelyi P,Gali A.Carbon defect qubit in two-dimensional WS2.Nat Commun2022;13:1210 PMCID:PMC8904548

[34]

Kovalska E,Luxa J.Edge-hydrogenated germanene by electrochemical decalcification-exfoliation of CaGe2: Germanene-enabled vapor sensor.ACS Nano2021;15:16709-18

[35]

Maiti R,Saadi MASR.Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits.Nat Photonics2020;14:578-84

[36]

Liu R,Liu L.Band alignment engineering in two-dimensional transition metal dichalcogenide-based heterostructures for photodetectors.Small Structures2021;2:2000136

[37]

An C,Zhang R.Two-dimensional material-enhanced flexible and self-healable photodetector for large-area photodetection.Adv Funct Mater2021;31:2100136

[38]

Wang K,Yan X.MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications.Nano Energy2021;79:105453

[39]

Cao G,Wang J,Yan X.Memristor based on two-dimensional titania nanosheets for multi-level storage and information processing.Nano Res2022;15:8419-27

[40]

Tang B,Li Y.Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing.Nat Commun2022;13:3037 PMCID:PMC9160094

[41]

Nguyen TN,Le QV,Dinh CT.Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts.ACS Catal2020;10:10068-95

[42]

Wang Y,Wang Y,Zheng G.Tuning of CO2 reduction selectivity on metal electrocatalysts.Small2017;13:1701809

[43]

Shimoni R,Binyamin S.Electrostatic secondary-sphere interactions that facilitate rapid and selective electrocatalytic CO2 reduction in a fe-porphyrin-based metal-organic framework.Angew Chem Int Ed Engl2022;61:e202206085 PMCID:PMC9401588

[44]

Zhou P,Zhao S.Hydrothermal synthesis of novel ternary hierarchical MoS2/TiO2/clinoptilolite nanocomposites with remarkably enhanced visible light response towards xanthates.Appl Surf Sci2021;542:148578

[45]

Sun Z,Tao H,Han B.Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials.Chem2017;3:560-87

[46]

Fang W,Zaman S,Han Y.Recent progress on two-dimensional electrocatalysis.Chem Res Chin Univ2020;36:611-21

[47]

Li Z,Ge Y.Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis.Natl Sci Rev2022;9:nwab142 PMCID:PMC9113131

[48]

Ma Y,Zhang T.Research progress on triphase interface electrocatalytic carbon dioxide reduction.Acta Chimica Sinica2021;79:369

[49]

Pan F.Designing CO2 reduction electrode materials by morphology and interface engineering.Energy Environ Sci2020;13:2275-309

[50]

Gu H,Shi G.Graphdiyne/Graphene heterostructure: a universal 2D scaffold anchoring monodispersed transition-metal phthalocyanines for selective and durable CO2 electroreduction.J Am Chem Soc2021;143:8679-88

[51]

Chen S,Hu X.Delocalized spin states in 2D atomic layers realizing enhanced electrocatalytic oxygen evolution.Adv Mater2017;29:1701687

[52]

Wang P,Yin L.Two-dimensional matrices confining metal single atoms with enhanced electrochemical reaction kinetics for energy storage applications.Energy Environ Sci2021;14:1794-834

[53]

Li X,Li L,Sun Y.Opportunity of atomically thin two-dimensional catalysts for promoting CO2 electroreduction.Acc Chem Res2020;53:2964-74

[54]

Rong X,Lu XL,Lu TB.Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction.Angew Chem Int Ed Engl2020;59:1961-5

[55]

Pan J,Deng P.Hierarchical and ultrathin copper nanosheets synthesized via galvanic replacement for selective electrocatalytic carbon dioxide conversion to carbon monoxide.Appl Catal B-environ2019;255:117736

[56]

Chia X.Characteristics and performance of two-dimensional materials for electrocatalysis.Nat Catal2018;1:909-21

[57]

Li Y,Chen S.In situ confined growth of bismuth nanoribbons with active and robust edge sites for boosted CO2 electroreduction.ACS Energy Lett2022;7:1454-61

[58]

Liu W,Bai P,Xu L.Utilizing spatial confinement effect of N atoms in micropores of coal-based metal-free material for efficiently electrochemical reduction of carbon dioxide.Appl Catal B-environ2020;272:118974

[59]

Niu ZZ,Zhang XL.Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 Electroreduction to multicarbon products.J Am Chem Soc2021;143:8011-21

[60]

Lv K,Shi M.Hydrophobic and electronic properties of the E-MoS2 nanosheets induced by FAS for the CO2 electroreduction to syngas with a wide range of CO/H2 ratios.Adv Funct Mater2018;28:1802339

[61]

Zeng L,Hong N,Liang T.Large-scale preparation of 2D metal films by a top-down approach.Adv Eng Mater2020;22:1901359

[62]

Xu Y,Brownbill NJ.Bottom-up wet-chemical synthesis of a two-dimensional porous carbon material with high supercapacitance using a cascade coupling/cyclization route.J Mater Chem A2021;9:3303-8

[63]

Watts MC,Russell-Pavier FS.Production of phosphorene nanoribbons.Nature2019;568:216-20

[64]

Novoselov KS,Morozov SV.Electric field effect in atomically thin carbon films.Science2004;306:666-9

[65]

Li H,Wang Y.Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2.Small2013;9:1974-81

[66]

Huang Y,Yang R.Universal mechanical exfoliation of large-area 2D crystals.Nat Commun2020;11:2453 PMCID:PMC7228924

[67]

Coleman JN,O’Neill A.Two-dimensional nanosheets produced by liquid exfoliation of layered materials.Science2011;331:568-71

[68]

Ma R.Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality.Acc Chem Res2015;48:136-43

[69]

Dakhchoune M,Semino R.Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets.Nat Mater2021;20:362-9

[70]

Obst M,Cruz AJ.Chemical vapor deposition of ionic liquids for the fabrication of ionogel films and patterns.Angew Chem Int Ed Engl2021;60:25668-73

[71]

Novoselov KS,Carvalho A.2D materials and van der Waals heterostructures.Science2016;353:aac9439

[72]

Kim KS,Jang H.Large-scale pattern growth of graphene films for stretchable transparent electrodes.Nature2009;457:706-10

[73]

Li X,An J.Large-area synthesis of high-quality and uniform graphene films on copper foils.Science2009;324:1312-4

[74]

Browne MP,Manzanares Palenzuela CL,Sofer Z.2H and 2H/1T-transition metal dichalcogenide films prepared via powderless gas deposition for the hydrogen evolution reaction.ACS Sustainable Chem Eng2019;7:16440-9

[75]

Yin C,Chu J.Ultrabroadband photodetectors up to 10.6 µm based on 2D Fe3O4 nanosheets.Adv Mater2020;32:e2002237

[76]

Zhou J,Huang X.A library of atomically thin metal chalcogenides.Nature2018;556:355-9

[77]

Li W,Lv B.Free-standing 2D ironene with magnetic vortex structure at room temperature.Matter2022;5:291-301

[78]

Xu T,Li A.Structural evolution of atomically thin 1T’-MoTe2 alloyed in chalcogen atmosphere.Small Struct2022;3:2200025

[79]

Sun Z,Dou Y.Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets.Nat Commun2014;5:3813

[80]

Peng Y,Huang H.Customization of functional MOFs by a modular design strategy for target applications.Chem Synth2022;2:15

[81]

Wang L,Wu L.Emerging synthesis strategies of 2D MOFs for electrical devices and integrated circuits.Small2022;18:e2201642

[82]

Pham HTB,Huang S.Imparting functionality and enhanced surface area to a 2D electrically conductive MOF via macrocyclic linker.J Am Chem Soc2022;144:10615-21

[83]

Zheng Y,Xu Y,Liu C.Ultrathin two-dimensional cobalt-organic frameworks nanosheets for electrochemical energy storage.Chem Eng J2019;373:1319-28

[84]

Sun X,Zhu Q.MoP nanoparticles supported on indium-doped porous carbon: outstanding catalysts for highly efficient CO2 electroreduction.Angew Chem Int Ed Engl2018;57:2427-31

[85]

Sun X,Kang X.Molybdenum-bismuth bimetallic chalcogenide nanosheets for highly efficient electrocatalytic reduction of carbon dioxide to methanol.Angew Chem Int Ed Engl2016;55:6771-5

[86]

Lu L,Chen C.Synthesis of Sn4P3/reduced graphene oxide nanocomposites as highly efficient electrocatalysts for CO2 reduction.Green Chem2020;22:6804-8

[87]

Rabiee H,Zhang X.Shape-tuned electrodeposition of bismuth-based nanosheets on flow-through hollow fiber gas diffusion electrode for high-efficiency CO2 reduction to formate.Appl Catal B-environ2021;286:119945

[88]

Abdelazim NM,Thomas S.Lateral growth of MoS2 2D material semiconductors over an insulator via electrodeposition.Adv Electron Mater2021;7:2100419

[89]

Feng C,Liu Z.A self-healing catalyst for electrocatalytic and photoelectrochemical oxygen evolution in highly alkaline conditions.Nat Commun2021;12:5980 PMCID:PMC8514436

[90]

Shen L,Luo J.Heteroatoms adjusting amorphous FeMn-based nanosheets via a facile electrodeposition method for full water splitting.ACS Sustainable Chem Eng2021;9:5963-71

[91]

Tan SF,Lee S.Multilayer graphene - a promising electrode material in liquid cell electrochemistry.Adv Funct Materials2021;31:2104628

[92]

Lukatskaya MR,Ren CE.Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide.Science2013;341:1502-5

[93]

Lukatskaya MR,Dyatkin B.Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases.Angew Chem Int Ed Engl2014;53:4877-80

[94]

Ghidiu M,Zhao MQ,Barsoum MW.Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance.Nature2014;516:78-81

[95]

Liu L,Xie Y.A universal lab-on-salt-particle approach to 2D single-layer ordered mesoporous materials.Adv Mater2020;32:e1906653

[96]

Zhang F,Zhang B.CO2 controls the oriented growth of metal-organic framework with highly accessible active sites.Nat Commun2020;11:1431 PMCID:PMC7080726

[97]

Ko KY,Kim Y.Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization.ACS Nano2016;10:9287-96

[98]

Lee C,Wang C,Wallace GG.Rapid formation of self-organised Ag nanosheets with high efficiency and selectivity in CO2 electroreduction to CO.Sustain Energy Fuels2017;1:1023-7

[99]

Zhang T,Qiu Y.Multilayered Zn nanosheets as an electrocatalyst for efficient electrochemical reduction of CO2.J Catal2018;357:154-62

[100]

Lei F,Sun Y.Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction.Nat Commun2016;7:12697 PMCID:PMC5025773

[101]

Zhang B,Hua M.Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets.J Am Chem Soc2020;142:13606-13

[102]

Han N,Deng J.Self-templated synthesis of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction.J Mater Chem A2019;7:1267-72

[103]

Liu W,Li A.Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays.Nat Commun2022;13:1877 PMCID:PMC8986799

[104]

Liu K,Shi M,Jiang Q.Simultaneous achieving of high faradaic efficiency and CO Partial current density for CO2 reduction via robust, noble-metal-free Zn nanosheets with favorable adsorption energy.Adv Energy Mater2019;9:1900276

[105]

Gao S,Jiao X.Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel.Nature2016;529:68-71

[106]

Gao S,Sun Z.Ultrathin CO3O4 layers realizing optimized CO2 electroreduction to formate.Angew Chem Int Ed Engl2016;55:698-702

[107]

Han N,Yang H.Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate.Nat Commun2018;9:1320 PMCID:PMC5882965

[108]

Geng Z,Chen W.Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO.Angew Chem Int Ed Engl2018;57:6054-9

[109]

Chu M,Guo W.Enhancing electroreduction of CO2 over Bi2 WO6 nanosheets by oxygen vacancies.Green Chem2019;21:2589-93

[110]

Wang H,Hou X,Tan T.Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution.Green Chem2016;18:3250-6

[111]

Zheng X,García de Arquer FP.Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate.Joule2017;1:794-805

[112]

Zhang A,Li H.In-situ surface reconstruction of InN nanosheets for efficient CO2 electroreduction into formate.Nano Lett2020;20:8229-35

[113]

Li F,Wang Z.Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces.Nat Catal2020;3:75-82

[114]

Yu Y,Theerthagiri J.Reconciling of experimental and theoretical insights on the electroactive behavior of C/Ni nanoparticles with AuPt alloys for hydrogen evolution efficiency and non-enzymatic sensor.Chem Eng J2022;435:134790

[115]

Yu Y,Theerthagiri J,Choi MY.Architecting the AuPt alloys for hydrazine oxidation as an anolyte in fuel cell: comparative analysis of hydrazine splitting and water splitting for energy-saving H2 generation.Appl Catal B-environ2022;316:121603

[116]

Lu Q,Zhou Y.A selective and efficient electrocatalyst for carbon dioxide reduction.Nat Commun2014;5:3242

[117]

Mistry H,Zeng Z.Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles.J Am Chem Soc2014;136:16473-6

[118]

Zhao Y,Yang W.Surface reconstruction of ultrathin palladium nanosheets during electrocatalytic CO2 reduction.Angew Chem Int Ed Engl2020;59:21493-8

[119]

Wang Z,Yamauchi Y.Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide.Nano Today2016;11:373-91

[120]

Xiao J,Liu S.Hexagonal Zn nanoplates enclosed by Zn(100) and Zn(002) facets for highly selective CO2 electroreduction to CO.ACS Appl Mater Interfaces2020;12:31431-8

[121]

Han J,Liu S.Reordering d orbital energies of single-site catalysts for CO2 electroreduction.Angew Chem Int Ed Engl2019;58:12711-6

[122]

Yin J,Jin J.A new hexagonal cobalt nanosheet catalyst for selective CO2 conversion to ethanal.J Am Chem Soc2021;143:15335-43

[123]

Yang J,Qu Y.Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction.Adv Energy Mater2020;10:2001709

[124]

Yang H,Deng J.Selective CO2 reduction on 2D mesoporous Bi nanosheets.Adv Energy Mater2018;8:1801536

[125]

Wu J,Harris BH.Electrochemical reduction of carbon dioxide: IV dependence of the Faradaic efficiency and current density on the microstructure and thickness of tin electrode.J Power Sources2014;258:189-94

[126]

Wu D,Fu X.Ultrasmall Bi nanoparticles confined in carbon nanosheets as highly active and durable catalysts for CO2 electroreduction.Appl Catal B-environ2021;284:119723

[127]

Shifa TA.Confined catalysis: progress and prospects in energy conversion.Adv Energy Mater2019;9:1902307

[128]

Xiao C.Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: a review.ACS Nano2021;15:7975-8000

[129]

Zhang Z,Tian H.Tailoring the surface and interface structures of copper-based catalysts for electrochemical reduction of CO2 to ethylene and ethanol.Small2022;18:e2107450

[130]

Hori Y,Takahashi R.Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution.J Chem Soc, Faraday Trans 11989;85:2309

[131]

Chen C,Yan X.A strategy to control the grain boundary density and Cu+/Cu0 ratio of Cu-based catalysts for efficient electroreduction of CO2 to C2 products.Green Chem2020;22:1572-6

[132]

Inoue T,Konishi S.Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders.Nature1979;277:637-8

[133]

Han Z,Chen Z.Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction.Nat Commun2022;13:3158 PMCID:PMC9174297

[134]

Sang J,Liu T.A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products.Angew Chem Int Ed Engl2022;61:e202114238

[135]

Xiang Q,Wang J.Heterostructure of ZnO nanosheets/Zn with a highly enhanced edge surface for efficient CO2 electrochemical reduction to CO.ACS Appl Mater Interfaces2021;13:10837-44

[136]

Sikam P,Roongcharoen T.Effect of 3d-transition metals doped in ZnO monolayers on the CO2 electrochemical reduction to valuable products: first principles study.Appl Surf Sci2021;550:149380

[137]

Luo W,Zhang J,Zhao K.Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO.Appl Catal B-environ2020;273:119060

[138]

Gao S,Liu W.Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction.Nat Commun2017;8:14503 PMCID:PMC5321757

[139]

Cheng D,Zhang G.The nature of active sites for carbon dioxide electroreduction over oxide-derived copper catalysts.Nat Commun2021;12:395 PMCID:PMC7810728

[140]

Yuan X,Cheng D.Controllable Cu0-Cu+ sites for electrocatalytic reduction of carbon dioxide.Angew Chem Int Ed Engl2021;60:15344-7

[141]

Li P,Liu J.In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts.Nat Commun2022;13:1965

[142]

Duan J,Zhao Y.Active and conductive layer stacked superlattices for highly selective CO2 electroreduction.Nat Commun2022;13:2039 PMCID:PMC9018841

[143]

Zhao M,Chen P.Highly selective electrochemical CO2 reduction to CO using a redox-active couple on low-crystallinity mesoporous ZnGa2O4 catalyst.J Mater Chem A2019;7:9316-23

[144]

Asadi M,Behranginia A.Robust carbon dioxide reduction on molybdenum disulphide edges.Nat Commun2014;5:4470

[145]

Abbasi P,Liu C.Tailoring the edge structure of molybdenum disulfide toward electrocatalytic reduction of carbon dioxide.ACS Nano2017;11:453-60

[146]

Mao X,Xu Y.Modulating the MoS2 edge structures by doping transition metals for electrocatalytic CO2 reduction.J Phys Chem C2020;124:10523-9

[147]

Asadi M,Liu C.Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid.Science2016;353:467-70

[148]

Zhang A,Li H.Electronic tuning of SnS2 nanosheets by hydrogen incorporation for efficient CO2 electroreduction.Nano Lett2021;21:7789-95

[149]

Ma X,Sun H.Boron, nitrogen co-doped carbon with abundant mesopores for efficient CO2 electroreduction.Appl Catal B-environ2021;298:120543

[150]

Tuci G,Zhang X,Giambastiani G.Exohedrally functionalized carbon-based networks as catalysts for electrochemical syntheses.Curr Opin Green Sustain Chem2022;33:100579

[151]

Zhang X,Jiang S.Rational confinement engineering of MOF-derived carbon-based electrocatalysts toward CO2 reduction and O2 reduction reactions.InfoMat2022;4

[152]

Hasani A,Do HH.Graphene-based catalysts for electrochemical carbon dioxide reduction.Carbon Energy2020;2:158-75 PMCID:PMC7866188

[153]

Tao H,Talreja N.Two-dimensional nanosheets for electrocatalysis in energy generation and conversion.J Mater Chem A2017;5:7257-84

[154]

Wang ZL,Xu M.Optimizing electron densities of Ni-N-C complexes by hybrid coordination for efficient electrocatalytic CO2 reduction.ChemSusChem2020;13:929-37

[155]

Lee SJ,Nithyadharseni P.Heteroatom-doped graphene-based materials for sustainable energy applications: a review.Renew Sust Energ Rev2021;143:110849

[156]

Song Y,Zhao C,Wei W.Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol.Angew Chem Int Ed Engl2017;56:10840-4

[157]

Hao X,Patil AM.Biomass-derived N-doped carbon for efficient electrocatalytic CO2 reduction to CO and Zn-CO2 batteries.ACS Appl Mater Interfaces2021;13:3738-47

[158]

Genovese C,Gibson EK.Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon.Nat Commun2018;9:935 PMCID:PMC5838105

[159]

Lu Q,Di Q.Dual role of pyridinic-N doping in carbon-coated Ni nanoparticles for highly efficient electrochemical CO2 reduction to CO over a wide potential range.ACS Catal2022;12:1364-74

[160]

Guo W,Bi J.Atomic indium catalysts for switching CO2 electroreduction products from formate to CO.J Am Chem Soc2021;143:6877-85

[161]

Shi G,Du L.Constructing Cu-C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4.Angew Chem Int Ed Engl2022;61:e202203569

[162]

Kang X,Sheveleva A.Electro-reduction of carbon dioxide at low over-potential at a metal-organic framework decorated cathode.Nat Commun2020;11:5464 PMCID:PMC7596083

[163]

Li N,Ong WJ.Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes).ACS Nano2017;11:10825-33

[164]

Qu D,Mi Y.Nitrogen doping and titanium vacancies synergistically promote CO2 fixation in seawater.Nanoscale2020;12:17191-5

[165]

Han Z,Chen HY,Agapie T.CO2 reduction selective for C(≥ 2) products on polycrystalline copper with N-substituted pyridinium additives.ACS Cent Sci2017;3:853-9

[166]

Costentin C.Molecular approach to catalysis of electrochemical reaction in porous films.Curr Opin Electrochem2019;15:58-65

[167]

Stuardi FM,Rotundo L,Gobetto R.Efficient electrochemical reduction of CO2 to formate in methanol solutions by Mn-functionalized electrodes in the presence of amines.Chem Eur J2022;28:e202104377 PMCID:PMC9325359

[168]

McCarthy BD,Johnson BA,Castner AT.Analysis of electrocatalytic metal-organic frameworks.Coord Chem Rev2020;406:213137 PMCID:PMC7272229

[169]

Sun C,Nervi C.Recent advances in catalytic CO2 reduction by organometal complexes anchored on modified electrodes.New J Chem2016;40:5656-61

[170]

Fang Y.Electrochemical reduction of CO2 at functionalized Au electrodes.J Am Chem Soc2017;139:3399-405

[171]

Filippi J,Gobetto R.Turning manganese into gold: efficient electrochemical CO2 reduction by a fac-Mn(apbpy)(Co)3Br complex in a gas-liquid interface flow cell.Chem Eng J2021;416:129050

[172]

Dubed Bandomo GC,Franco F.Mechanically constrained catalytic Mn(CO)3 Br single sites in a two-dimensional covalent organic framework for CO2 electroreduction in H2O.ACS Catal2021;11:7210-22

[173]

Zhu HJ,Wang YR.Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction.Nat Commun2020;11:497 PMCID:PMC6981265

AI Summary AI Mindmap
PDF

83

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/