Interface chemistry for sodium metal anodes/batteries: a review

Guojie Li , Xinyao Lou , Chengbin Peng , Chuntai Liu , Weihua Chen

Chemical Synthesis ›› 2022, Vol. 2 ›› Issue (3) : 16

PDF
Chemical Synthesis ›› 2022, Vol. 2 ›› Issue (3) :16 DOI: 10.20517/cs.2022.19
review-article

Interface chemistry for sodium metal anodes/batteries: a review

Author information +
History +
PDF

Abstract

Sodium metal batteries (SMBs), benefiting from their low cost and high energy densities, have drawn considerable interest as large-scale energy storage devices. However, uncontrollable dendritic formation of sodium metal anodes (SMAs) caused by inhomogeneous deposition of Na+ severely decreases the Coulombic efficiency, leads to short cycling life, and poses potential safety hazards, dragging SMBs out of practical applications. Electrolytes are attracting massive attention for not only providing ion transport channels but also exhibiting vital effects on interfacial compatibility and dendrite growth. In fact, the as-formed solid electrolyte interphase (SEI) has a great influence on the deposition and stripping process of SMAs. Moreover, Na plating process is accompanied by the generation of SEI, in which the electrolyte plays a vital role. Nevertheless, until now, the interaction among electrolyte-SEI-sodium dendrite has rarely been summarized. Herein, a fundamental understanding of sodium dendrite is concluded and the influence of the electrolyte and interface on Na+ deposition is emphasized. Furthermore, the outlook for constructing dendrite-inhibited SMAs is suggested.

Keywords

Sodium metal anode / interface chemistry / dendrite suppression / solid electrolyte interphase / electrolytes

Cite this article

Download citation ▾
Guojie Li, Xinyao Lou, Chengbin Peng, Chuntai Liu, Weihua Chen. Interface chemistry for sodium metal anodes/batteries: a review. Chemical Synthesis, 2022, 2(3): 16 DOI:10.20517/cs.2022.19

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ge J,Rao AM,Lu B.Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries.Nat Sustain2022;5:225-34

[2]

Song K,Mi L,Chen W.Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries.Small2021;17:e1903194

[3]

Wan Y,Chen W.Ultra-high initial coulombic efficiency induced by interface engineering enables rapid, stable sodium storage.Angew Chem Int Ed Engl2021;60:11481-6

[4]

Leng K,Guo J.A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries.Adv Funct Mater2020;30:2001317

[5]

Zhang C,Li G,Liu X.Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes.Adv Mater2018;:e1801328

[6]

Li G,Wang A,Luo J.Cations and anions regulation through zwitterionic gel electrolytes for stable lithium metal anodes.Energy Storage Mater2020;24:574-8

[7]

Wang R,Feng X.Highly [010]-oriented, gradient Co-doped LiMnPO4 with enhanced cycling stability as cathode for Li-ion batteries.J Solid State Electrochem2020;24:511-9

[8]

Yang K,Song K.Se-C bond and reversible SEI in facile synthesized SnSe23D carbon induced stable anode for sodium-ion batteries.Electrochimica Acta2020;337:135783

[9]

Hwang JY,Sun YK.Sodium-ion batteries: present and future.Chem Soc Rev2017;46:3529-614

[10]

Åvall G,Brandell D.Sodium-ion battery electrolytes: modeling and simulations.Adv Energy Mater2018;8:1703036

[11]

Zhang J,Mi L.Bimetal synergistic effect induced high reversibility of conversion-type Ni@NiCo2S4 as a free-standing anode for sodium ion batteries.J Phys Chem Lett2020;11:1435-42

[12]

Chen L,Shi J.PAANa-induced ductile SEI of bare micro-sized FeS enables high sodium-ion storage performance.Sci China Mater2021;64:105-14

[13]

Ma B.Fast charging limits of ideally stable metal anodes in liquid electrolytes.Adv Eng Mater2022;12:2102967

[14]

Zhao Y,Meng X,Chen Y.A cross-linked tin oxide/polymer composite gel electrolyte with adjustable porosity for enhanced sodium ion batteries.Chem Energ J2022;431:133922

[15]

Zhou S,Song K,Shi J.SnS/SnS2/rGO heterostructure with fast kinetics enables compact sodium ion storage.FlatChem2021;28:100259

[16]

Miao RJ,Wang WG.Influence of Bi2O3 additive on the electrochemical performance of Na3.1Y0.1Zr1.9Si2PO12 inorganic solid electrolyte.Ceram Int2021;47:17455-62

[17]

Das SK,Archer LA.Sodium-oxygen batteries: a new class of metal-air batteries.J Mater Chem A2014;2:12623

[18]

Manthiram A.Ambient temperature sodium-sulfur batteries.Small2015;11:2108-14

[19]

Zhang D,Wang S.Simultaneous formation of artificial SEI film and 3D host for stable metallic sodium anodes.ACS Appl Mater Interfaces2017;9:40265-72

[20]

Wu J,Lu Z.Non-flammable electrolyte for dendrite-free sodium-sulfur battery.Energy Storage Mater2019;23:8-16

[21]

Zhao S,Li F.Recent progress on understanding and constructing reliable Na anode for aprotic Na-O2 batteries: a mini review.Electrochem commun2020;118:106797

[22]

Tong Z,Fang M.Na-CO2 battery with NASICON-structured solid-state electrolyte.Nano Energy2021;85:105972

[23]

Ding J,Zhang H,Mitlin D.Selenium impregnated monolithic carbons as free-standing cathodes for high volumetric energy lithium and sodium metal batteries.Adv Energy Mater2018;8:1701918

[24]

Pham VH,Stacchiola DJ.Selenium-sulfur (SeS) fast charging cathode for sodium and lithium metal batteries.Energy Storage Mater2019;20:71-9

[25]

Wang Y,Wang Y.Developments and perspectives on emerging high-energy-density sodium-metal batteries.Chem2019;5:2547-70

[26]

Wang Y,Liu Y.Enhanced sodium metal/electrolyte interface by a localized high-concentration electrolyte for sodium metal batteries: first-principles calculations and experimental studies.ACS Appl Energy Mater2021;4:7376-84

[27]

Yu Q,Qi X.Liquid electrolyte immobilized in compact polymer matrix for stable sodium metal anodes.Energy Storage Mater2019;23:610-6

[28]

Xu X,Cheng J.Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal.J Energ Chem2020;41:73-8

[29]

Mittal N,Lizundia E.Hierarchical nanocellulose-based gel polymer electrolytes for stable na electrodeposition in sodium ion batteries.Small2022;:e2107183

[30]

Bao C,Liu P.Solid electrolyte interphases on sodium metal anodes.Adv Funct Mater2020;30:2004891

[31]

Yao G,Yan Y.Facile synthesis of hierarchical Na2Fe(SO4)2@rGO/C as high-voltage cathode for energy density-enhanced sodium-ion batteries.J Energ Chem2020;50:387-94

[32]

Ponrouch A,Boschin A,Johansson P.Non-aqueous electrolytes for sodium-ion batteries.J Mater Chem A2015;3:22-42

[33]

Li Y,Halacoglu S,Druffel T.Phase-transition interlayer enables high-performance solid-state sodium batteries with sulfide solid electrolyte.Adv Funct Mater2021;31:2101636

[34]

Wei S,Xu J,Tu Z.Highly stable sodium batteries enabled by functional ionic polymer membranes.Adv Mater2017;29:1605512

[35]

Manohar C,Kar M,Macfarlane DR.Stability enhancing ionic liquid hybrid electrolyte for NVP@C cathode based sodium batteries.Sustainable Energy Fuels2018;2:566-76

[36]

Mishra K,Hashmi SA.Recent progress in electrode and electrolyte materials for flexible sodium-ion batteries.J Mater Chem A2020;8:22507-43

[37]

Wang T,Xu Z.Recent advanced development of artificial interphase engineering for stable sodium metal anodes.Small2022;18:e2102250

[38]

Lee J,Kim S,Lee J.A review on recent approaches for designing the SEI layer on sodium metal anodes.Mater Adv2020;1:3143-66

[39]

Zhao C,Yue J.Advanced Na metal anodes.J Energ Chem2018;27:1584-96

[40]

Ma C,Wang Y.Advanced carbon nanostructures for future high performance sodium metal anodes.Energy Storage Mater2020;25:811-26

[41]

Fan L.Recent advances in effective protection of sodium metal anode.Nano Energy2018;53:630-42

[42]

Matios E,Wang C.Enabling safe sodium metal batteries by solid electrolyte interphase engineering: a review.Ind Eng Chem Res2019;58:9758-80

[43]

Zhao C,Qi X.Solid-state sodium batteries.Adv Energy Mater2018;8:1703012

[44]

Zheng X,Liu X.Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries.Energy Environ Sci2020;13:1788-98

[45]

Zheng J,Zhao W,Engelhard MH.Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes.ACS Energy Lett2018;3:315-21

[46]

Zhu M,Zhang Y.An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte.Energy Storage Mater2021;42:145-53

[47]

Lei D,Huang H.Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery.Nat Commun2019;10:4244 PMCID:PMC6751212

[48]

Park T,Ban A,Kim D.Nonflammable gel polymer electrolyte with ion-conductive polyester networks for sodium metal cells with excellent cycling stability and enhanced safety.ACS Appl Energy Mater2021;4:10153-62

[49]

Yao Y,Wang H.Toward high energy density all solid-state sodium batteries with excellent flexibility.Adv Energy Mater2020;10:1903698

[50]

Lai H,Wang J,Wu X.Design of solid-state sodium-ion batteries with high mass-loading cathode by porous-dense bilayer electrolyte.Journal of Materiomics2021;7:1352-7

[51]

Ran L,Cooper E.Enhanced safety and performance of high-voltage solid-state sodium battery through trilayer, multifunctional electrolyte design.Energy Storage Mater2021;41:8-13

[52]

Zhang Z,Ren C.A ceramic/polymer composite solid electrolyte for sodium batteries.J Mater Chem A2016;4:15823-8

[53]

Hong Y,Chen H,Song W.In operando observation of chemical and mechanical stability of Li and Na dendrites under quasi-zero electrochemical field.Energy Storage Mater2018;11:118-26

[54]

Han M,Ma T,Tao Z.In situ atomic force microscopy study of nano-micro sodium deposition in ester-based electrolytes.Chem Commun (Camb)2018;54:2381-4

[55]

Wang H,Matios E.Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate.Angew Chem Int Ed Engl2018;57:7734-7

[56]

Hu J,Wang S.Electrochemical deposition mechanism of sodium and potassium.Energy Storage Mater2021;36:91-8

[57]

Zheng X,Luo W,Hao Y.Sodium metal anodes for room-temperature sodium-ion batteries: applications, challenges and solutions.Energy Storage Mater2019;16:6-23

[58]

Gaissmaier D,Fantauzzi D.Microscopic properties of Na and Li-a first principle study of metal battery anode materials.ChemSusChem2020;13:771-83 PMCID:PMC7065241

[59]

Medenbach L,Haas R.Origins of dendrite formation in sodium-oxygen batteries and possible countermeasures.Energy Technol2017;5:2265-74

[60]

Rodriguez R,Nathan SS.In situ optical imaging of sodium electrodeposition: effects of fluoroethylene carbonate.ACS Energy Lett2017;2:2051-7

[61]

Akolkar R.Mathematical model of the dendritic growth during lithium electrodeposition.J Power Sources2013;232:23-8

[62]

Park MS,Heo JM.Thermoplastic polyurethane elastomer-based gel polymer electrolytes for sodium-metal cells with enhanced cycling performance.ChemSusChem2019;12:4645-54

[63]

Gu Y,Li YJ.Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.Nat Commun2018;9:1339 PMCID:PMC5890267

[64]

Sun B,Maitra U.Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries.Adv Mater2020;32:e1903891

[65]

Wang X,Chen J,Mao Z.Durable sodium battery composed of conductive Ti3C2Tx MXene modified gel polymer electrolyte.Solid State Ionics2021;365:115655

[66]

Gao H,Xue L.Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte.Chem2018;4:833-44

[67]

Wang H,Luo J.Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries.Chem Soc Rev2020;49:3783-805

[68]

Rees GJ,Ning Z,Pavlovskaya GE.Imaging sodium dendrite growth in all-solid-state sodium batteries using 23Na T2-weighted magnetic resonance imaging.Angew Chem Int Ed Engl2021;60:2110-5

[69]

Wang X,Mao Z.In situ construction of a stable interface induced by the SnS2 ultra-thin layer for dendrite restriction in a solid-state sodium metal battery.J Mater Chem A2021;9:16039-45

[70]

Yi Q,Sun X,Yu H.Fluorinated ether based electrolyte enabling sodium-metal batteries with exceptional cycling stability.ACS Appl Mater Interfaces2019;11:46965-72

[71]

Wang T,Shi J.Simple synthesis of sandwich-like SnSe2/rGO as high initial coulombic efficiency and high stability anode for sodium-ion batteries.J Energ Chem2020;46:71-7

[72]

Gao L,Liu Y,Huang Z.Revealing the chemistry of an anode-passivating electrolyte salt for high rate and stable sodium metal batteries.J Mater Chem A2018;6:12012-7

[73]

Xu Y,Ma C,Wan Y.Pre-sodiation strategy for superior sodium storage batteries.Chin J Chem Eng2021;39:261-8

[74]

Fang W,Zheng Y.A bilayer interface formed in high concentration electrolyte with SbF3 additive for long-cycle and high-rate sodium metal battery.J Power Sources2020;455:227956

[75]

Lei Y,Qi Y,Bao S.Gelation of organic liquid electrolyte to achieve superior sodium-ion full-cells.J Colloid Interface Sci2021;599:190-7

[76]

Xu M,Ihsan-ul-haq M.NaF-rich solid electrolyte interphase for dendrite-free sodium metal batteries.Energy Storage Mater2022;44:477-86

[77]

Wenzel S,Krüger D,Janek J.Interphase formation on lithium solid electrolytes - an in situ approach to study interfacial reactions by photoelectron spectroscopy.Solid State Ionics2015;278:98-105

[78]

Binder M,Zaubitzer S.Sodium cyclopentadienide as a new type of electrolyte for sodium batteries.ChemElectroChem2021;8:365-9

[79]

Ge C,Xue L.Synthesis of novel organic-ligand-doped sodium bis(oxalate)-borate complexes with tailored thermal stability and enhanced ion conductivity for sodium ion batteries.J Power Sources2014;248:77-82

[80]

Voropaeva D,Kulova T.Solvation and sodium conductivity of nonaqueous polymer electrolytes based on Nafion-117 membranes and polar aprotic solvents.Solid State Ionics2018;324:28-32

[81]

Xu X,Qin X.A room-temperature sodium-sulfur battery with high capacity and stable cycling performance.Nat Commun2018;9:3870 PMCID:PMC6155237

[82]

Li P,Huang X,Xie J.Nitrofullerene as an electrolyte-compatible additive for high-performance sodium metal batteries.Nano Energy2021;89:106396

[83]

Chen Q,Hou Z.Building an artificial solid electrolyte interphase with high-uniformity and fast ion diffusion for ultralong-life sodium metal anodes.J Mater Chem A2020;8:16232-7

[84]

Chen X,Hou T,Peng H.Ion-solvent chemistry-inspired cation-additive strategy to stabilize electrolytes for sodium-metal batteries.Chem2020;6:2242-56

[85]

Hu Y.The mystery of electrolyte concentration: from superhigh to ultralow.ACS Energy Lett2020;5:3633-6

[86]

Ma J,Wang X.Revealing the mechanism of saturated ether electrolyte for improving the long-cycling stability of Na-O2 batteries.Nano Energy2021;84:105927

[87]

Wang H,Yang R.Electrochemically stable sodium metal-tellurium/carbon nanorods batteries.Adv Energy Mater2019;9:1903046

[88]

Zhou X,Zhu Z,Li H.Anion-reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries.Angew Chem Int Ed Engl2022;61:e202205045

[89]

Forsyth M,Chen F.Novel Na+ ion diffusion mechanism in mixed organic-inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cells.J Phys Chem C2016;120:4276-86

[90]

Sun H,Xu X.A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte.Nat Commun2019;10:3302 PMCID:PMC6656735

[91]

Wang D,Chen C,Matsumoto K.A β”-Alumina/inorganic ionic liquid dual electrolyte for intermediate-temperature sodium-sulfur batteries.Adv Funct Materials2021;31:2105524

[92]

Ruiz-martínez D,Gómez R.Development of novel inorganic electrolytes for room temperature rechargeable sodium metal batteries.Energy Environ Sci2017;10:1936-41

[93]

Zhou H,Gong Q.A sodium liquid metal battery based on the multi-cationic electrolyte for grid energy storage.Energy Storage Mater2022;50:572-9

[94]

Liu X,Deng Y.Implanting a fire-extinguishing alkyl in sodium metal battery electrolytes via a functional molecule.Adv Funct Materials2022;32:2109378

[95]

Jiang R,Liu Y.An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery.Energy Storage Mater2021;42:370-9

[96]

Shi Q,Wu M,Wang H.High-performance sodium metal anodes enabled by a bifunctional potassium salt.Angew Chem Int Ed Engl2018;57:9069-72

[97]

Lee J,Lee J.Ultraconcentrated sodium bis(fluorosulfonyl)imide-based electrolytes for high-performance sodium metal batteries.ACS Appl Mater Interfaces2017;9:3723-32

[98]

Seh ZW,Sun Y.A Highly reversible room-temperature sodium metal anode.ACS Cent Sci2015;1:449-55 PMCID:PMC4827673

[99]

Wang S,Jie Y.Stable sodium metal batteries via manipulation of electrolyte solvation structure.Small Methods2020;4:1900856

[100]

Zhang Q,Miao L.An alternative to lithium metal anodes: non-dendritic and highly reversible sodium metal anodes for Li-Na hybrid batteries.Angew Chem Int Ed Engl2018;57:14796-800

[101]

Lee B,Mitlin D.Sodium metal anodes: emerging solutions to dendrite growth.Chem Rev2019;119:5416-60

[102]

He J,Shin W.Stable dendrite-free sodium-sulfur batteries enabled by a localized high-concentration electrolyte.J Am Chem Soc2021;143:20241-8

[103]

Chen F,Armand M.Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications.Nat Mater2022;

[104]

Lu Z,Guo Y.Electrolyte sieving chemistry in suppressing gas evolution of sodium-metal batteries.Angew Chem Int Ed Engl2022;61:e202206340

[105]

Wang X,Sawczyk M.Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes.Nat Mater2022;21:1057-65

[106]

Zhu X,Deng W,Yang H.An all-solid-state and all-organic sodium-ion battery based on redox-active polymers and plastic crystal electrolyte.Electrochimica Acta2015;178:55-9

[107]

Babu B,Prykhodska S,Schubert US.New diglyme-based gel polymer electrolytes for na-based energy storage devices.ChemSusChem2021;14:4836-45 PMCID:PMC8597054

[108]

Yu X,Goodenough JB.Ambient-temperature all-solid-state sodium batteries with a laminated composite electrolyte.Adv Funct Mater2021;31:2002144

[109]

Zheng J,Li W,Chen W.Novel flame retardant rigid spirocyclic biphosphate based copolymer gel electrolytes for sodium ion batteries with excellent high-temperature performance.J Mater Chem A2020;8:22962-8

[110]

Bitner-Michalska A,Żukowska G.Fluorine-free electrolytes for all-solid sodium-ion batteries based on percyano-substituted organic salts.Sci Rep2017;7:40036 PMCID:PMC5220368

[111]

Gao H,Xin S,Goodenough JB.A plastic-crystal electrolyte interphase for all-solid-state sodium batteries.Angew Chem Int Ed Engl2017;56:5541-5

[112]

Makhlooghiazad F,Sun J.Composite electrolytes based on electrospun PVDF and ionic plastic crystal matrices for Na-metal battery applications.J Phys Mater2021;4:034003

[113]

Chen G,Zhang K.Hyperbranched polyether boosting ionic conductivity of polymer electrolytes for all-solid-state sodium ion batteries.Chem Eng J2020;394:124885

[114]

Du G,Li J.Low-operating temperature, high-rate and durable solid-state sodium-ion battery based on polymer electrolyte and prussian blue cathode.Adv Energy Mater2020;10:1903351

[115]

Zhao C,Lu Y,Chen L.Revealing an interconnected interfacial layer in solid-state polymer sodium batteries.Angew Chem Int Ed Engl2019;58:17026-32

[116]

Chen S,Yin Y,Liao X.A solid polymer electrolyte based on star-like hyperbranched β-cyclodextrin for all-solid-state sodium batteries.J Power Sources2018;399:363-71

[117]

Gao H,Park K.A sodium-ion battery with a low-cost cross-linked gel-polymer electrolyte.Adv Energy Mater2016;6:1600467

[118]

Xiong W,Yin Z,Hu X.Supported ionic liquid gel membranes enhanced by ionization modification for sodium metal batteries.ACS Sustainable Chem Eng2021;9:12100-8

[119]

Wen P,Shi X.Photopolymerized gel electrolyte with unprecedented room-temperature ionic conductivity for high-energy-density solid-state sodium metal batteries.Adv Energy Mater2021;11:2002930

[120]

Zhang W,Liu X.In-situ polymerized gel polymer electrolytes with high room-temperature ionic conductivity and regulated Na+ solvation structure for sodium metal batteries.Adv Funct Materials2022;32:2201205

[121]

Zheng J,Li W,Chen W.Effects of comonomers on the performance of stable phosphonate-based gel terpolymer electrolytes for sodium-ion batteries with ultralong cycling stability.ACS Appl Mater Interfaces2021;13:25024-35

[122]

Bay M,Grissa R,Sakamoto J.Sodium plating from Na-β”-alumina ceramics at room temperature, paving the way for fast-charging all-solid-state batteries.Adv Energy Mater2020;10:1902899

[123]

Wu J,Fu Q.Inorganic solid electrolytes for all-solid-state sodium batteries: fundamentals and strategies for battery optimization.Adv Funct Mater2021;31:2008165

[124]

Matios E,Wang C.Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior electrochemical stability.ACS Appl Mater Interfaces2019;11:5064-72

[125]

Weng W,Shen L.High ionic conductivity and stable phase Na11.5Sn2Sb0.5Ti0.5S12 for all-solid-state sodium batteries.J Power Sources2021;512:230485

[126]

Wang X,Wang D.Improving the alkali metal electrode/inorganic solid electrolyte contact via room-temperature ultrasound solid welding.Nat Commun2021;12:7109 PMCID:PMC8651668

[127]

Wang C,Zhao Y.Grain boundary design of solid electrolyte actualizing stable all-solid-state sodium batteries.Small2021;17:e2103819

[128]

Quérel E,Cavallaro A,Tietz F.The role of NaSICON surface chemistry in stabilizing fast-charging Na metal solid-state batteries.J Phys Energy2021;3:044007

[129]

Zhang S,Zhao F.Gradiently sodiated alucone as an interfacial stabilizing strategy for solid-state na metal batteries.Adv Funct Mater2020;30:2001118

[130]

Johari NSM,Jia S.High-throughput development of Na2ZnSiO4-based hybrid electrolytes for sodium-ion batteries.J Power Sources2022;541:231706

[131]

Nsm J,Ahmad N.Sodium-ion nanoionic hybrid solid electrolyte: extended study on enhanced electrical and electrochemical properties.Solid State Ionics2022;377:115882

[132]

Zhang T,Li X.A silica-reinforced composite electrolyte with greatly enhanced interfacial lithium-ion transfer kinetics for high-performance lithium metal batteries.Adv Mater2022;:e2205575

[133]

Zhang C,Zhang J,Tang W.2D materials for lithium/sodium metal anodes.Adv Energy Mater2018;8:1802833

[134]

Tang W,Zhang C.Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets.Adv Energy Mater2018;8:1800866

[135]

He F,Zhang X,Luo J.High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes.Adv Mater2021;33:e2105329

[136]

Niu W,Liu Y.All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase.Chem Eng J2020;384:123233

[137]

Zhou Y,Han D.Approaching practically accessible and environmentally adaptive sodium metal batteries with high loading cathodes through in situ interlock interface.Adv Funct Materials2022;32:2111314

[138]

Ran L,Gentle I.Stable interfaces in a sodium metal-free, solid-state sodium-ion battery with gradient composite electrolyte.ACS Appl Mater Interfaces2021;13:39355-62

[139]

Matios E,Luo J.Reactivity-guided formulation of composite solid polymer electrolytes for superior sodium metal batteries.J Mater Chem A2021;9:18632-43

[140]

Luo C,Ji H.Mechanically robust gel polymer electrolyte for an ultrastable sodium metal battery.Small2020;16:e1906208

[141]

Zhang Z,Li C.Metal-organic framework-supported poly(ethylene oxide) composite gel polymer electrolytes for high-performance lithium/sodium metal batteries.ACS Appl Mater Interfaces2021;13:37262-72

[142]

Hamisu A.Polymer composite electrolyte of SPSU(Na)/PPEGMA/hBN for sodium-ion batteries.Polymers and Polymer Composites2019;27:419-28

[143]

Miao X,Ge X.AlF3-modified anode-electrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte.Energy Storage Mater2020;30:170-8

[144]

Sun Z,Ni Q.Solid-state Na metal batteries with superior cycling stability enabled by ferroelectric enhanced Na/Na3Zr2Si2PO12 interface.Small2022;18:e2200716

[145]

Zhao Y,Dai Y.Homogeneous Na+ transfer dynamic at Na/Na3Zr2Si2PO12 interface for all solid-state sodium metal batteries.Nano Energy2021;88:106293

[146]

Wang C,Zhao Y.Surface potential regulation realizing stable sodium/Na3Zr2Si2PO12 interface for room-temperature sodium metal batteries.Small2021;17:e2100974

[147]

Yang J,Wu J.Improving Na/Na3Zr2Si2PO12 interface via SnOx/Sn film for high-performance solid-state sodium metal batteries.Small Methods2021;5:e2100339

[148]

Yang L,Liang X.Novel sodium-poly(tartaric acid)borate-based single-ion conducting polymer electrolyte for sodium-metal batteries.ACS Appl Energy Mater2020;3:10053-60

[149]

Qi X,Liu L.Sodium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolytes for sodium-ion batteries.ChemElectroChem2016;3:1741-5

[150]

Zheng Y,Clites M,Pomerantseva E.High-capacity all-solid-state sodium metal battery with hybrid polymer electrolytes.Adv Energy Mater2018;8:1801885

[151]

Ling W,Yue J.A flexible solid electrolyte with multilayer structure for sodium metal batteries.Adv Energy Mater2020;10:1903966

[152]

Luo C,Shen D,Huang D.Enhanced interfacial kinetics and fast Na+ conduction of hybrid solid polymer electrolytes for all-solid-state batteries.Energy Storage Mater2021;43:463-70

[153]

Xu X,Zhou D.Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage.Chem2020;6:902-18

[154]

Shi J,Yang Y.Nano-sized oxide filled composite PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium and sodium batteries.Solid State Ionics2018;326:136-44

AI Summary AI Mindmap
PDF

34

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/