Boosting VOCs elimination by coupling different techniques

Rebecca El Khawaja , Savita Kaliya Perumal Veerapandian , Rim Bitar , Nathalie De Geyter , Rino Morent , Nicolas Heymans , Guy De Weireld , Tarek Barakat , Yang Ding , Grêce Abdallah , Shilpa Sonar , Axel Löfberg , Jean-Marc Giraudon , Christophe Poupin , Renaud Cousin , Fabrice Cazier , Dorothée Dewaele , Paul Genevray , Yann Landkocz , Clémence Méausoone , Nour Jaber , Dominique Courcot , Sylvain Billet , Jean-François Lamonier , Bao-Lian Su , Stéphane Siffert

Chemical Synthesis ›› 2022, Vol. 2 ›› Issue (2) : 13

PDF
Chemical Synthesis ›› 2022, Vol. 2 ›› Issue (2) :13 DOI: 10.20517/cs.2022.10
Review

Boosting VOCs elimination by coupling different techniques

Author information +
History +
PDF

Abstract

Volatile Organic Compounds (VOCs) are known to be hazardous and harmful to human health and the environment. In mixtures or during repeated exposures, significant toxicity of these compounds in trace amounts has been revealed. In vitro air-liquid interface approaches underlined the interest in evaluating the impact of repeated VOC exposure and the importance of carrying out a toxicological validation of the techniques in addition to the standard chemical analyses. The difficulties in sampling and measuring VOCs in stationary source emissions are due to both the complexity of the mixture present and the wide range of concentrations. The coupling of VOC treatment techniques results in efficient systems with lower operating energy consumption. Three main couplings are outlined in this review, highlighting their advantages and relevance. First, adsorption-catalysis coupling is particularly valuable by using adsorption and catalytic oxidation regeneration initiated, for example, by selective dielectric heating. Then, several key aspects of the plasma catalysis process, such as the choice of catalysts suitable for the non-thermal plasma (NTP) environment, the simultaneous removal of different VOCs, and the in situ regeneration of the catalyst by NTP exposure, are discussed. The adsorption-photocatalysis coupling technology is also one of the effective and promising methods for VOC removal. The VOC molecules strongly adsorbed on the surface of the photocatalyst can be directly oxidized by the photogenerated hole on the photocatalyst (e.g., TiO2).

Keywords

VOC removal / adsorption materials / coupling techniques / catalysis / plasma / photocatalysis

Cite this article

Download citation ▾
Rebecca El Khawaja, Savita Kaliya Perumal Veerapandian, Rim Bitar, Nathalie De Geyter, Rino Morent, Nicolas Heymans, Guy De Weireld, Tarek Barakat, Yang Ding, Grêce Abdallah, Shilpa Sonar, Axel Löfberg, Jean-Marc Giraudon, Christophe Poupin, Renaud Cousin, Fabrice Cazier, Dorothée Dewaele, Paul Genevray, Yann Landkocz, Clémence Méausoone, Nour Jaber, Dominique Courcot, Sylvain Billet, Jean-François Lamonier, Bao-Lian Su, Stéphane Siffert. Boosting VOCs elimination by coupling different techniques. Chemical Synthesis, 2022, 2(2): 13 DOI:10.20517/cs.2022.10

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

World Health Organization. Ambient air pollution: a global assessment of exposure and burden of disease; 2016. Available from: https://apps.who.int/iris/handle/10665/250141 [Last accessed on 28 Jun 2022]

[2]

Dehghani M,Sorooshian A.Characteristics and health effects of BTEX in a hot spot for urban pollution.Ecotoxicol Environ Saf2018;155:133-43

[3]

Billionnet C,Kirchner S,Annesi-Maesano I.Quantitative assessments of indoor air pollution and respiratory health in a population-based sample of French dwellings.Environ Res2011;111:425-34

[4]

Lim SK,Yoon KS.Risk assessment of volatile organic compounds benzene, toluene, ethylbenzene, and xylene (BTEX) in consumer products.J Toxicol Environ Health A2014;77:1502-21

[5]

Parra M,Bermejo R.Quantification of indoor and outdoor volatile organic compounds (VOCs) in pubs and cafés in Pamplona, Spain.Atmospheric Environment2008;42:6647-54

[6]

Waring MS.An evaluation of the indoor air quality in bars before and after a smoking ban in Austin, Texas.J Expo Sci Environ Epidemiol2007;17:260-8

[7]

Lan Q,Li G.Hematotoxicity in workers exposed to low levels of benzene.Science2004;306:1774-6 PMCID:PMC1256034

[8]

Baan R,Straif K.A review of human carcinogens - part F: chemical agents and related occupations.The Lancet Oncology2009;10:1143-4

[9]

Guha N,Grosse Y.Carcinogenicity of trichloroethylene, tetrachloroethylene, some other chlorinated solvents, and their metabolites.The Lancet Oncology2012;13:1192-3

[10]

Marques MM,Lachenmeier DW.Carcinogenicity of acrolein, crotonaldehyde, and arecoline.The Lancet Oncology2021;22:19-20

[11]

Plenge-Bönig A.Exposure to toluene in the printing industry is associated with subfecundity in women but not in men.Occup Environ Med1999;56:443-8

[12]

Svensson BG,Erfurth EM,Skerfving S.Hormone status in occupational toluene exposure.Am J Ind Med1992;22:99-107

[13]

Paterson CA,Taylor T.Indoor PM2.5, VOCs and asthma outcomes: a systematic review in adults and their home environments.Environ Res2021;202:111631

[14]

Monteil C.Acrolein toxicity: comparative in vitro study with lung slices and pneumocytes type II cell line from rats.Toxicology1999;133:129-38

[15]

Win-Shwe TT.Neurotoxicity of toluene.Toxicol Lett2010;198:93-9

[16]

Bolden AL,Colborn T.New look at BTEX: are ambient levels a problem?.Environ Sci Technol2015;49:5261-76

[17]

Hirsch T,von Mutius E.Inner city air pollution and respiratory health and atopy in children.Eur Respir J1999;14:669-77

[18]

Rumchev K,Bulsara M,Stick S.Association of domestic exposure to volatile organic compounds with asthma in young children.Thorax2004;59:746-51 PMCID:PMC1747137

[19]

Hulin M,Annesi-Maesano I.Indoor air pollution and childhood asthma: variations between urban and rural areas.Indoor Air2010;20:502-14

[20]

Ortega C.Exposure to indoor endocrine-disrupting chemicals and childhood asthma and obesity.Pediatrics2019;144:S42-S42

[21]

Billionnet C,Annesi-Maesano I.GERIE StudyEstimating the health effects of exposure to multi-pollutant mixture.Ann Epidemiol2012;22:126-41

[22]

Arif AA.Association between personal exposure to volatile organic compounds and asthma among US adult population.Int Arch Occup Environ Health2007;80:711-9

[23]

Ware JH,Neas LM.Respiratory and irritant health effects of ambient volatile organic compounds. The Kanawha County Health Study.Am J Epidemiol1993;137:1287-301

[24]

Duong A,McHale CM,Zhang L.Reproductive and developmental toxicity of formaldehyde: a systematic review.Mutat Res2011;728:118-38 PMCID:PMC3203331

[25]

Huff JE,Roycroft J,Haseman JK.Carcinogenesis studies of benzene, methyl benzene, and dimethyl benzenes.Ann N Y Acad Sci1988;534:427-40

[26]

Kodavanti PR,Moore-Smith DA.Acute and subchronic toxicity of inhaled toluene in male Long-Evans rats: oxidative stress markers in brain.Neurotoxicology2015;51:10-9

[27]

Lash LH,Guyton KZ.Trichloroethylene biotransformation and its role in mutagenicity, carcinogenicity and target organ toxicity.Mutat Res Rev Mutat Res2014;762:22-36 PMCID:PMC4254735

[28]

Muralidhara S,Mehta SM,Acosta D.Acute, subacute, and subchronic oral toxicity studies of 1,1-dichloroethane in rats: application to risk evaluation.Toxicol Sci2001;64:135-45

[29]

Zhang Y,He X.The cellular function and molecular mechanism of formaldehyde in cardiovascular disease and heart development.J Cell Mol Med2021;25:5358-71 PMCID:PMC8184665

[30]

Toxicology Program. NTP toxicology and carcinogenesis studies of benzene (CAS No. 71-43-2) in F344/N rats and B6C3F1 mice (Gavage Studies).Natl Toxicol Program Tech Rep Ser1986;289:1-277

[31]

Gałęzowska G,Wolska L.In vitro assays as a tool for determination of VOCs toxic effect on respiratory system: a critical review.TrAC Trends in Analytical Chemistry2016;77:14-22

[32]

Norbäck D,Janson C,Boman G.Asthmatic symptoms and volatile organic compounds, formaldehyde, and carbon dioxide in dwellings.Occup Environ Med1995;52:388-95 PMCID:PMC1128243

[33]

Rasmussen RE.In vitro systems for exposure of lung cells to NO2 and O3.J Toxicol Environ Health1984;13:397-411

[34]

Aufderheide M,Ritter D.Novel approaches for studying pulmonary toxicity in vitro.Toxicology Letters2003;140-141:205-11

[35]

Kim HR,Shin DY.Novel approach to study the cardiovascular effects and mechanism of action of urban particulate matter using lung epithelial-endothelial tetra-culture system.Toxicol In Vitro2017;38:33-40

[36]

Thorne D,Payne R.Development of a BALB/c 3T3 neutral red uptake cytotoxicity test using a mainstream cigarette smoke exposure system.BMC Res Notes2014;7:367 PMCID:PMC4067082

[37]

Al Zallouha M,Brunet J.Usefulness of toxicological validation of VOCs catalytic degradation by air-liquid interface exposure system.Environ Res2017;152:328-35

[38]

Brunet J,Landkocz Y.Identification of by-products issued from the catalytic oxidation of toluene by chemical and biological methods.Comptes Rendus Chimie2015;18:1084-93

[39]

Livak KJ.Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) Method.Methods2001;25:402-8

[40]

Méausoone C,Cazier F,Courcot D.Toxicological responses of BEAS-2B cells to repeated exposures to benzene, toluene, m-xylene, and mesitylene using air-liquid interface method.J Appl Toxicol2021;41:1262-74

[41]

Billet S,Dagher Z.Ambient particulate matter (PM2.5): physicochemical characterization and metabolic activation of the organic fraction in human lung epithelial cells (A549).Environ Res2007;105:212-23

[42]

Kim S,Waidyanatha S.Genetic polymorphisms and benzene metabolism in humans exposed to a wide range of air concentrations.Pharmacogenet Genomics2007;17:789-801

[43]

Gutierrez-Ruiz MC,Hernandez E.Cytokine response and oxidative stress produced by ethanol, acetaldehyde and endotoxin treatment in HepG2 cells.Isr Med Assoc J2001;3:131-6

[44]

Méausoone C,Tremolet G.In vitro toxicological evaluation of emissions from catalytic oxidation removal of industrial VOCs by air/liquid interface (ALI) exposure system in repeated mode.Toxicol In Vitro2019;58:110-7

[45]

Cazier F,Nouali H. Improvement of the on site VOC measurement in industrial emissions, CEM 2006, Ademe 7ème Conférence Int. Sur La Mes. Polluants à l’émission, 31 Janvier - 2 Février 2006, Paris;2006.

[46]

Brown R.Collection and analysis of trace organic vapour pollutants in ambient atmospheres.Journal of Chromatography A1979;178:79-90

[47]

Bishop RW.A laboratory evaluation of sorbent tubes for use with a thermal desorption gas chromatography-mass selective detection technique.Journal of Chromatographic Science1990;28:589-93

[48]

Bruner F,Mangani F.Graphitized carbon black: a unique adsorbent for gas chromatography and related techniques.Chromatographia1990;30:565-72

[49]

Mccaffrey CA,Brookes BI.Adsorbent tube evaluation for the preconcentration of volatile organic compounds in air for analysis by gas chromatography-mass spectrometry.Analyst1994;119:897-902

[50]

No CBPECCAS. Sampling method for volatile organic compounds (SMVOC); 1996. Available from: https://swap.stanford.edu/20140413191218/http://www.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/0031.pdf [Last accessed on 28 Jun 2022]

[51]

British HSE method MDHS104: volatile organic compounds in air.

[52]

Thomas R,Provost R.A single-method approach for the analysis of volatile and semivolatile organic compounds in air using thermal desorption coupled with GC-MS.LCGC Europe2014;Available from: https://www.chromatographyonline.com/view/single[Last accessed on 28 Jun 2022]

[53]

Kamal MS,Hossain MM.Catalytic oxidation of volatile organic compounds (VOCs) - a review.Atmospheric Environment2016;140:117-34

[54]

Liotta L.Catalytic oxidation of volatile organic compounds on supported noble metals.Applied Catalysis B: Environmental2010;100:403-12

[55]

Jabłońska M,Kukulska-zając E.Zeolites Y modified with palladium as effective catalysts for low-temperature methanol incineration.Applied Catalysis B: Environmental2015;166-167:353-65

[56]

Tidahy H,Wyrwalski F,Aboukaïs A.Catalytic activity of copper and palladium based catalysts for toluene total oxidation.Catalysis Today2007;119:317-20

[57]

Cecilia J,Marrero-jerez J.Catalytic behaviour of CuO-CeO2 systems prepared by different synthetic methodologies in the CO-PROX reaction under CO2-H2O feed stream.Catalysts2017;7:160

[58]

Romero D,Labaki M.Removal of toluene over NaX zeolite exchanged with Cu2+.Catalysts2015;5:1479-97

[59]

Castaño MH,Moreno S.Mn-Co-Al-Mg mixed oxides by auto-combustion method and their use as catalysts in the total oxidation of toluene.Journal of Molecular Catalysis A: Chemical2013;370:167-74

[60]

Zhang W,Li X,Ma D.Comparison of dynamic adsorption/desorption characteristics of toluene on different porous materials.Journal of Environmental Sciences2012;24:520-8

[61]

Wang Y,Xu Z.Preparation of surface-functionalized porous clay heterostructures via carbonization of soft-template and their adsorption performance for toluene.Applied Surface Science2016;363:113-21

[62]

Yang X,Tang X.Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure.J Environ Sci (China)2018;67:104-14

[63]

Lillo-ródenas M,Linares-solano A.Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations.Carbon2005;43:1758-67

[64]

Xie H,Zhou G,Song Y.Effect of preparation conditions on the hydrogen storage capacity of activated carbon adsorbents with super-high specific surface areas.Materials Chemistry and Physics2013;141:203-7

[65]

Jain A,Srinivasan M.Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediated hydrothermal treatment for adsorption applications.Chemical Engineering Journal2015;273:622-9

[66]

Zhang Z,Li D.Micro-mesoporous activated carbon simultaneously possessing large surface area and ultra-high pore volume for efficiently adsorbing various VOCs.Carbon2020;170:567-79

[67]

Srivastava I,Gupta T.Preparation of mesoporous carbon composites and its highly enhanced removal capacity of toxic pollutants from air.Journal of Environmental Chemical Engineering2019;7:103271

[68]

Nasrullah A,Bhat A.Mangosteen peel waste as a sustainable precursor for high surface area mesoporous activated carbon: characterization and application for methylene blue removal.Journal of Cleaner Production2019;211:1190-200

[69]

Wang J,Niu Q.Highly efficient adsorptive removal of toluene using silicon-modified activated carbon with improved fire resistance.J Hazard Mater2021;415:125753

[70]

Monneyron P,Manero S.A combined selective adsorption and ozonation process for VOCs removal from air.Can J Chem Eng2007;85:326-32

[71]

Bläker C,Luckas M,Bathen D.Investigation of load-dependent heat of adsorption of alkanes and alkenes on zeolites and activated carbon.Microporous and Mesoporous Materials2017;241:1-10

[72]

Zhang X,Zheng Y.Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms.Bioresour Technol2017;245:606-14

[73]

Kupryianchyk D,Zimmerman AR.Sorption of hydrophobic organic compounds to a diverse suite of carbonaceous materials with emphasis on biochar.Chemosphere2016;144:879-87

[74]

Mohamed AR,Darzi GN.Preparation of carbon molecular sieve from lignocellulosic biomass: A review.Renewable and Sustainable Energy Reviews2010;14:1591-9

[75]

Molina-sabio M,Rodriguez-reinoso F.Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon.Carbon1996;34:505-9

[76]

Feng D,Zhang Y.Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption.Chemical Engineering Journal2021;410:127707

[77]

Han Y,Qi PX,Chang J.Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties.J Environ Manage2013;118:196-204

[78]

Dehkhoda AM,Ellis N.A novel method to tailor the porous structure of KOH-activated biochar and its application in capacitive deionization and energy storage.Biomass and Bioenergy2016;87:107-21

[79]

Lonappan L,Rouissi T,Surampalli RY.Development of biochar-based green functional materials using organic acids for environmental applications.Journal of Cleaner Production2020;244:118841

[80]

Kumar A,Khapre A,Kumar S.Sorption of volatile organic compounds on non-activated biochar.Bioresour Technol2020;297:122469

[81]

Vikrant K,Younis SA,Kumar S.Evidence for superiority of conventional adsorbents in the sorptive removal of gaseous benzene under real-world conditions: test of activated carbon against novel metal-organic frameworks.Journal of Cleaner Production2019;235:1090-102

[82]

Rawal A,Hook JM.Mineral-biochar composites: molecular structure and porosity.Environ Sci Technol2016;50:7706-14

[83]

Yang G,Qin H.Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups.Applied Surface Science2014;293:299-305

[84]

Soscún H,Hernández J.Acidity of the Brönsted acid sites of zeolites.Int J Quantum Chem2001;82:143-50

[85]

Guisnet M.Zéolithes - De la synthèse aux applications.Tech l’ingénieur2018.;

[86]

Brodu N,Andriantsiferana C,Manero MH.Fixed-bed adsorption of toluene on high silica zeolites: experiments and mathematical modelling using LDF approximation and a multisite model.Environ Technol2015;36:1807-18

[87]

Kim K.The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating.Microporous and Mesoporous Materials2012;152:78-83

[88]

Li X,Guo Y,Xu W.Adsorption and desorption characteristics of hydrophobic hierarchical zeolites for the removal of volatile organic compounds.Chemical Engineering Journal2021;411:128558

[89]

Yin T,Jin L,Liu N.Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment.Microporous and Mesoporous Materials2020;305:110327

[90]

Lv Y,Yu G.Hydrophobic design of adsorbent for VOC removal in humid environment and quick regeneration by microwave.Microporous and Mesoporous Materials2020;294:109869

[91]

Yang R.Gas separation by adsorption processes.Chemical Engineering Science1988;43:985

[92]

Meier M,Vallee S,Lee KH.Microwave regeneration of zeolites in a 1 meter column.AIChE Journal2009;55:1906-13

[93]

Cherbański R,Stefanidis GD.Microwave swing regeneration vs. temperature swing regeneration - comparison of desorption kinetics.Ind Eng Chem Res2011;50:8632-44

[94]

Guillemot M,Mignard S.Volatile organic compounds (VOCs) removal over dual functional adsorbent/catalyst system.Applied Catalysis B: Environmental2007;75:249-55

[95]

Urbutis A.Dual function adsorbent-catalyst CuO-CeO2/NaX for temperature swing oxidation of benzene, toluene and xylene.Open Chemistry2014;12:492-501

[96]

Wang Y,Li S,Guo L.Ru/hierarchical HZSM-5 zeolite as efficient bi-functional adsorbent/catalyst for bulky aromatic VOCs elimination.Microporous and Mesoporous Materials2018;258:17-25

[97]

Nigar H,Mallada R.Microwave-assisted catalytic combustion for the efficient continuous cleaning of VOC-containing air streams.Environ Sci Technol2018;52:5892-901

[98]

Roland U,Holzer F,Kopinke F.Selective dielectric heating for efficient adsorptive-catalytic cleaning of contaminated gas streams.Applied Catalysis A: General2014;474:244-9

[99]

Joung H,Oh J,Park H.Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles.Applied Surface Science2014;290:267-73

[100]

Kim K,You Y.Adsorption-desorption characteristics of VOCs over impregnated activated carbons.Catalysis Today2006;111:223-8

[101]

Minh NT,Trung BC,Long NQ.Dual functional adsorbent/catalyst of nano-gold/metal oxides supported on carbon grain for low-temperature removal of toluene in the presence of water vapor.Clean Techn Environ Policy2018;20:1861-73

[102]

Zhang J,Peng H.Enhanced toluene combustion performance over Pt loaded hierarchical porous MOR zeolite.Chemical Engineering Journal2018;334:10-8

[103]

Yao S,Wang B.Rh1Cu3/ZSM-5 as an efficient bifunctional catalyst/adsorbent for VOCs abatement.Catal Lett2022;152:771-80

[104]

Aziz A,Kim M.An efficient Co-ZSM-5 catalyst for the abatement of volatile organics in air: effect of the synthesis protocol.Int J Environ Sci Technol2018;15:707-18

[105]

Beauchet R.Oxydation catalytique de divers composes organiques volatils (COV) à l’aide de catalyseurs zeolithiques; 2008.

[106]

Baek S,Ihm S.Design of dual functional adsorbent/catalyst system for the control of VOC’s by using metal-loaded hydrophobic Y-zeolites.Catalysis Today2004;93-95:575-81

[107]

Wu SM,Janiak C.Confinement effects in zeolite-confined noble metals.Angew Chem Int Ed Engl2019;58:12340-54

[108]

Liu G,Zhang B,Zhang X.Catalytic combustion of VOC on sandwich-structured Pt@ZSM-5 nanosheets prepared by controllable intercalation.J Hazard Mater2019;367:568-76

[109]

Chai Y,Li W.Noble metal particles confined in zeolites: synthesis, characterization, and applications.Adv Sci (Weinh)2019;6:1900299 PMCID:PMC6702632

[110]

Chen C,Zhang L.Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts.Chem Commun (Camb)2015;51:5936-8

[111]

Dong T,Ma M.Hierarchical zeolite enveloping Pd-CeO2 nanowires: an efficient adsorption/catalysis bifunctional catalyst for low temperature propane total degradation.Chemical Engineering Journal2020;393:124717

[112]

Soares OSGP,Parpot P,Pereira MFR.Oxidation of volatile organic compounds by highly efficient metal zeolite catalysts.ChemCatChem2018;10:3754-60

[113]

Shi C,Li X,Wang Y.Catalytic formaldehyde removal by “storage-oxidation” cycling process over supported silver catalysts.Chemical Engineering Journal2012;200-202:729-37

[114]

Adebayo BO,Rownaghi AA.Toluene abatement by simultaneous adsorption and oxidation over mixed-metal oxides.Ind Eng Chem Res2020;59:13762-72

[115]

Kim H.Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects.Plasma Process Polym2004;1:91-110

[116]

Fridman A.Plasma chemistry. New york: Cambridge University press; 2008.

[117]

Vandenbroucke AM,De Geyter N.Non-thermal plasmas for non-catalytic and catalytic VOC abatement.J Hazard Mater2011;195:30-54

[118]

An HT, Pham Huu T, Le Van T, Cormier J, Khacef A. Application of atmospheric non thermal plasma-catalysis hybrid system for air pollution control: toluene removal.Catalysis Today2011;176:474-7

[119]

Holzer F,Roland U.Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants.Plasma Chem Plasma Process2005;25:595-611

[120]

Zhao D,Shi C,Zhu A.Low-concentration formaldehyde removal from air using a cycled storage-discharge (CSD) plasma catalytic process.Chemical Engineering Science2011;66:3922-9

[121]

Urashima K.Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology.IEEE Trans Dielect Electr Insul2000;7:602-14

[122]

Chen HL,Chen SH,Yu SJ.Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications.Environ Sci Technol2009;43:2216-27

[123]

Ollegott K,Oberste‐beulmann C,Muhler M.Fundamental properties and applications of dielectric barrier discharges in plasma-catalytic processes at atmospheric pressure.Chemie Ingenieur Technik2020;92:1542-58

[124]

Chang T,Huang Y.Post-plasma-catalytic removal of toluene using MnO2-Co3O4 catalysts and their synergistic mechanism.Chemical Engineering Journal2018;348:15-25

[125]

Karuppiah J,Karvembu R.Catalytic nonthermal plasma reactor for the abatement of low concentrations of isopropanol.Chemical Engineering Journal2010;165:194-9

[126]

Tang X,Ye L.Removal of dilute VOCs in air by post-plasma catalysis over Ag-based composite oxide catalysts.Catalysis Today2013;211:39-43

[127]

Sultana S,Mora M.Post plasma-catalysis for trichloroethylene decomposition over CeO2 catalyst: Synergistic effect and stability test.Applied Catalysis B: Environmental2019;253:49-59

[128]

Yang S,Yang J.Three-dimensional hollow urchin α-MnO2 for enhanced catalytic activity towards toluene decomposition in post-plasma catalysis.Chemical Engineering Journal2020;402:126154

[129]

Neyts EC.Understanding plasma catalysis through modelling and simulation - a review.J Phys D: Appl Phys2014;47:224010

[130]

Mirzaei A,Kim HW.Resistive-based gas sensors for detection of benzene, toluene and xylene (BTX) gases: a review.J Mater Chem C2018;6:4342-70

[131]

Magureanu M,Eloy P,Parvulescu VI.Plasma-assisted catalysis for volatile organic compounds abatement.Applied Catalysis B: Environmental2005;61:12-20

[132]

Huang HB,Leung DYC.Removal of toluene using UV-irradiated and nonthermal plasma-driven photocatalyst system.J Environ Eng2010;136:1231-6

[133]

Subrahmanyam C,Kiwi-minsker L.Catalytic non-thermal plasma reactor for abatement of toluene.Chemical Engineering Journal2010;160:677-82

[134]

Durme J, Dewulf J, Demeestere K, Leys C, Van Langenhove H. Post-plasma catalytic technology for the removal of toluene from indoor air: effect of humidity.Applied Catalysis B: Environmental2009;87:78-83

[135]

Hayashi K,Tanaka M,Kurita S.Temperature dependence of toluene decomposition behavior in the discharge-catalyst hybrid reactor.IEEE Trans on Ind Applicat2009;45:1553-8

[136]

Ban J,Kang M.Highly concentrated toluene decomposition on the dielectric barrier discharge (DBD) plasma-photocatalytic hybrid system with Mn-Ti-incorporated mesoporous silicate photocatalyst (Mn-Ti-MPS).Applied Surface Science2006;253:535-42

[137]

Huang H.Combination of photocatalysis downstream the non-thermal plasma reactor for oxidation of gas-phase toluene.J Hazard Mater2009;171:535-41

[138]

Harling AM,Whitehead JC.The role of ozone in the plasma-catalytic destruction of environmental pollutants.Applied Catalysis B: Environmental2009;90:157-61

[139]

Delagrange S,Tatibouet J.Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts.Applied Catalysis B: Environmental2006;68:92-8

[140]

Demidyuk V.Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system.Plasma Chem Plasma Process2007;27:85-94

[141]

Harling AM,Fischer SJ.Plasma-catalysis destruction of aromatics for environmental clean-up: effect of temperature and configuration.Applied Catalysis B: Environmental2008;82:180-9

[142]

Demidiouk V.Decomposition of volatile organic compounds in plasma-catalytic system.IEEE Trans Plasma Sci2005;33:157-61

[143]

Li D,Kanazawa S,Nomoto Y.Decomposition of toluene by streamer corona discharge with catalyst.Journal of Electrostatics2002;55:311-9

[144]

Durme J, Dewulf J, Sysmans W, Leys C, Van Langenhove H. Efficient toluene abatement in indoor air by a plasma catalytic hybrid system.Applied Catalysis B: Environmental2007;74:161-9

[145]

Ge H,Li X,Chen Z.Removal of low-concentration benzene in indoor air with plasma-MnO 2 catalysis system.Journal of Electrostatics2015;76:216-21

[146]

Jiang N,Guo L.Post plasma-catalysis of low concentration VOC over alumina-supported silver catalysts in a surface/packed-bed hybrid discharge reactor.Water Air Soil Pollut2017;228

[147]

Hu J,Li J,Lu N.Degradation of benzene by bipolar pulsed series surface/packed-bed discharge reactor over MnO2-TiO2/zeolite catalyst.Chemical Engineering Journal2016;293:216-24

[148]

Zhang S,Liang J.Atmospheric pressure oxidation of dilute xylene using plasma-assisted MnOX catalysis system with different precursors.Molecular Catalysis2019;467:87-94

[149]

Wang L,Zhang C,Zhang B.Effects of precursors for manganese-loaded γ-Al2O3 catalysts on plasma-catalytic removal of o-xylene.Chemical Engineering Journal2016;288:406-13

[150]

Piroi D,Mandache NB.The decomposition of p-xylene in air by plasma-assisted catalysis. 2008 17th International Conference on Gas Discharges and Their Applications; 2008. p. 473-6. .Available from: https://ieeexplore.ieee.org/abstract/document/5379364 [Last accessed on 28 Jun 2022]

[151]

Fan X,Wang MY.Removal of low-concentration BTX in air using a combined plasma catalysis system.Chemosphere2009;75:1301-6

[152]

Oda T,Yamaji K.TCE decomposition by the nonthermal plasma process concerning ozone effect.IEEE Trans on Ind Applicat2004;40:1249-56

[153]

Han S,Ono R.Improvement of the energy efficiency in the decomposition of dilute trichloroethylene by the barrier discharge plasma process.IEEE Trans on Ind Applicat2005;41:1343-9

[154]

Magureanu M,Hu J,Florea M.Plasma-assisted catalysis total oxidation of trichloroethylene over gold nano-particles embedded in SBA-15 catalysts.Appl Catal B2007;76:275-81

[155]

Vandenbroucke A,De Geyter N.Plasma-catalytic decomposition of TCE.Int J Plasma Environ Sci Technol2010;4:135-8Available from: http://ijpest.com/Contents/04/2/PDF/04[Last accessed on 28 Jun 2022]

[156]

Han S.Decomposition mechanism of trichloroethylene based on by-product distribution in the hybrid barrier discharge plasma process.Plasma Sources Sci Technol2007;16:413-21

[157]

Vandenbroucke A,Jiménez-sanchidrián C.TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst.Appl Catal B2014;156-157:94-100

[158]

Dinh MN,Lamonier J.Plasma-catalysis of low TCE concentration in air using LaMnO3+δ as catalyst.Appl Catal B2014;147:904-11

[159]

Li Y,Shi J,Shangguan W.Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts.Chem Eng J2014;241:251-8

[160]

Li Y,Shi J,Zhou J.Modified manganese oxide octahedral molecular sieves M’-OMS-2 (M’ = Co,Ce,Cu) as catalysts in post plasma-catalysis for acetaldehyde degradation.Catal Today2015;256:178-85

[161]

Chang T,Ma C.Process optimization of plasma-catalytic formaldehyde removal using MnOx–Fe2O3 catalysts by response surface methodology.J. Environ Chem Eng2021;9:105773

[162]

Zhu X,Cai Y.Post-plasma catalytic removal of methanol over Mn-Ce catalysts in an atmospheric dielectric barrier discharge.Appl Catal B2016;183:124-32

[163]

Norsic C,Batiot-dupeyrat C.Non thermal plasma assisted catalysis of methanol oxidation on Mn, Ce and Cu oxides supported on γ-Al2O3.Chem Eng J2016;304:563-72

[164]

Karuppiah J,Manoj Kumar Reddy P,Subrahmanyam C.Catalytic nonthermal plasma reactor for the abatement of low concentrations of benzene.Int J Environ Sci Technol2014;11:311-8

[165]

Guo H,Hojo H,Einaga H.Removal of benzene by non-thermal plasma catalysis over manganese oxides through a facile synthesis method.Environ Sci Pollut Res Int2019;26:8237-47

[166]

Xu N,He C.Benzene removal using non-thermal plasma with CuO/AC catalyst: reaction condition optimization and decomposition mechanism.Plasma Chem Plasma Process2014;34:1387-402

[167]

Jiang N,Li J,Lu N.Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas.Appl Catal B2016;184:355-63

[168]

Zhu B,Li M,Zhang X.High-performance of plasma-catalysis hybrid system for toluene removal in air using supported Au nanocatalysts.Chem Eng J2020;381:122599

[169]

Wu J,Wang H.Catalytic performance of plasma catalysis system with nickel oxide catalysts on different supports for toluene removal: effect of water vapor.Appl Catal B2014;156-157:265-72

[170]

Xu W,Jiang X.Effect of calcium addition in plasma catalysis for toluene removal by Ni/ZSM-5 : acidity/basicity, catalytic activity and reaction mechanism.J Hazard Mater2020;387:122004

[171]

Yao S,Xie H.Highly efficient decomposition of toluene using a high-temperature plasma-catalysis reactor.Chemosphere2020;247:125863

[172]

Wu J,Xia Q.Decomposition of toluene in a plasma catalysis system with NiO, MnO2, CeO2, Fe2O3, and CuO catalysts.Plasma Chem Plasma Process2013;33:1073-82

[173]

Wang B,Xu M,Meng D.Plasma-catalytic removal of toluene over CeO2 -MnO x catalysts in an atmosphere dielectric barrier discharge.Chem Eng J2017;322:679-92

[174]

Yu X,Li S,Zhang Q.A comparison of in- and post-plasma catalysis for toluene abatement through continuous and sequential processes in dielectric barrier discharge reactors.J Clean Prod2020;276:124251

[175]

Xu X,Xu W.High-efficiency non-thermal plasma-catalysis of cobalt incorporated mesoporous MCM-41 for toluene removal.Catal Today2017;281:527-33

[176]

Sudhakaran MSP,Karuppiah J,Mok YS.Plasma catalytic removal of p-Xylene from air stream using γ-Al2O3 supported manganese catalyst.Top Catal2017;60:944-54

[177]

Wang L,He H,Wang C.Effect of doping metals on OMS-2/γ-Al2 O3 catalysts for plasma-catalytic removal of.o120:6136-44

[178]

Wu Z,Zhu Z,Zhang X.Enhanced oxidation of xylene using plasma activation of an Mn/Al2 O3 catalyst.IEEE Trans Plasma Sci2020;48:163-72

[179]

Zhu X,Qin R.Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor.Appl Catal B2015;170-171:293-300

[180]

Liang WJ,Li JX,Jin YQ.Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma.J Hazard Mater2010;175:1090-5

[181]

Ding H,Lu F,Zhang J.Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams.J Phys D: Appl Phys2006;39:3603-8

[182]

Jia Z,Yang D.Plasma catalysis application of gold nanoparticles for acetaldehyde decomposition.Chem Eng J2018;347:913-22

[183]

Vega-gonzález A,Sauce S.Plasma-catalysis for volatile organic compounds decomposition: complexity of the reaction pathways during acetaldehyde removal.Catalysts2020;10:1146

[184]

Kostov K,Alves L.Characteristics of dielectric barrier discharge reactor for material treatment.Braz J Phys2009;39:2

[185]

Chen HL,Chen SH.Review of packed-bed plasma reactor for ozone generation and air pollution control.Ind Eng Chem Res2008;47:2122-30

[186]

Ye Z,Onyshchenko I.An in-depth investigation of toluene decomposition with a glass beads-packed bed dielectric barrier discharge reactor.Ind Eng Chem Res2017;56:10215-26

[187]

Kaliya Perumal Veerapandian S,De Geyter N.Regeneration of hopcalite used for the adsorption plasma catalytic removal of toluene by non-thermal plasma.J Hazard Mater2021;402:123877

[188]

Veerapandian S,De Geyter N.Abatement of VOCs Using packed bed non-thermal plasma reactors: a review.Catalysts2017;7:113

[189]

Vandenbroucke AM,Geyter ND.Decomposition of toluene with plasma-catalysis: a review.J Adv Oxid Technol2012;15:232-41

[190]

Feng X,He C,Wang T.Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: a review.Catal Sci Technol2018;8:936-54

[191]

Durme J, Dewulf J, Leys C, Van Langenhove H. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review.Appl Catal B2008;78:324-33

[192]

Whitehead JC.Plasma–catalysis: the known knowns, the known unknowns and the unknown unknowns.J Phys D: Appl Phys2016;49:243001

[193]

Neyts EC,Sunkara MK.Plasma catalysis: synergistic effects at the nanoscale.Chem Rev2015;115:13408-46

[194]

Li S,Yu X,Zhang Q.The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: a review.Chem Eng J2020;388:124275

[195]

Zhang Y,Yuan C.CuO@Cu/Ag/MWNTs/sponge electrode-enhanced pollutant removal in dielectric barrier discharge (DBD) reactor.Chemosphere2019;229:273-83

[196]

Mei D.Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: effects of plasma processing parameters and reactor design.Journal of CO2 Utilization2017;19:68-78

[197]

Yuan D,Qi J,Gu J.Comparison of hydroxyl radicals generation during granular activated carbon regeneration in DBD reactor driven by bipolar pulse power and alternating current power.Vacuum2017;143:87-94

[198]

Jiang N,Guo L.Improved performance for toluene abatement in a continuous-flow pulsed sliding discharge reactor based on three-electrode configuration.Plasma Chem Plasma Process2019;39:227-40

[199]

Jiang N,Qiu C.Reactive species distribution characteristics and toluene destruction in the three-electrode DBD reactor energized by different pulsed modes.Chem Eng J2018;350:12-9

[200]

Li S,Dang X,Liu P.Using non-thermal plasma for decomposition of toluene adsorbed on γ-Al2O3 and ZSM-5: Configuration and optimization of a double dielectric barrier discharge reactor.Chem Eng J2019;375:122027

[201]

Wang T,Wang H,Wu Z.In-plasma catalytic degradation of toluene over different MnO2 polymorphs and study of reaction mechanism.Chinese J Catal2017;38:793-803

[202]

Liu R,Li B,Zhu T.Simultaneous removal of toluene and styrene by non-thermal plasma-catalysis: effect of VOCs interaction and system configuration.Chemosphere2021;263:127893

[203]

Qin C,Jiang C.Simultaneous oxidation of toluene and ethyl acetate by dielectric barrier discharge combined with Fe, Mn and Mo catalysts.SSci Total Environ2021;782:146931

[204]

Mustafa MF,Liu Y,Wang H.Volatile organic compounds (VOCs) removal in non-thermal plasma double dielectric barrier discharge reactor.J Hazard Mater2018;347:317-24

[205]

Hoseini S,Allahyari S.Application of plasma technology in the removal of volatile organic compounds (BTX) using manganese oxide nano-catalysts synthesized from spent batteries.J Clean Prod2019;232:1134-47

[206]

Mustafa MF,Lu W.Application of non-thermal plasma technology on fugitive methane destruction: configuration and optimization of double dielectric barrier discharge reactor.J Clean Prod2018;174:670-7

[207]

Shang K,Zhang Q,Jiang N.Successive treatment of benzene and derived byproducts by a novel plasma catalysis-adsorption process.J Environ Chem Eng2021;9:105767

[208]

Yamagata Y,Inoue K,Muraoka K.Decomposition of volatile organic compounds at low concentrations using combination of densification by zeolite adsorption and dielectric barrier discharge.Jpn J Appl Phys2006;45:8251-4

[209]

Sivachandiran L,Rousseau A.Non-thermal plasma assisted regeneration of acetone adsorbed TiO2 surface.Plasma Chem Plasma Process2013;33:855-71

[210]

Sultana S,Leys C,Morent R.Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: a review.Catalysts2015;5:718-46

[211]

Xu W,Ye D,Liu J.Performance of toluene removal in a nonthermal plasma catalysis system over flake-like HZSM-5 zeolite with tunable pore size and evaluation of its byproducts.Nanomaterials (Basel)2019;9:290 PMCID:PMC6410028

[212]

Yi H,Tang X.Removal of toluene from industrial gas over 13X zeolite supported catalysts by adsorption-plasma catalytic process: removal of toluene by adsorption plasma catalytic process.J Chem Technol Biotechnol2017;92:2276-86

[213]

Xu X,Xu W.Plasma-catalysis of metal loaded SBA-15 for toluene removal: comparison of continuously introduced and adsorption-discharge plasma system.Chem Eng J2016;283:276-84

[214]

Trinh QH,Mok YS.Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite.J Hazard Mater2015;285:525-34

[215]

Wang W,Zhu T.Removal of gas phase low-concentration toluene over Mn, Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration.J Hazard Mater2015;292:70-8

[216]

Fan H,Li X,Xu Y.High-efficiency plasma catalytic removal of dilute benzene from air.J Phys D: Appl Phys2009;42:225105

[217]

Kim H,Futamura S.Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma.Appl Catal B2008;79:356-67

[218]

Dang X,Cao L.Plasma-catalytic oxidation of adsorbed toluene with gas circulation.Catal Commun2013;40:116-9

[219]

Yi H,Tang X.Removal of toluene from industrial gas by adsorption–plasma catalytic process: comparison of closed discharge and ventilated discharge.Plasma Chem Plasma Process2018;38:331-45

[220]

Hosseini MS,Yarahmadi R.Removal of toluene from air using a Cycled Storage-Discharge (CSD) plasma catalytic process.Plasma Chem Plasma Process2019;39:125-42

[221]

Youn JS,Park S.Plasma-assisted oxidation of toluene over Fe/zeolite catalyst in DBD reactor using adsorption/desorption system.Catal Commun2018;113:36-40

[222]

Xu W,Chen H.Adsorption-discharge plasma system for toluene decomposition over Ni-SBA catalyst: in situ observation and humidity influence study.Chem Eng J2020;382:122950

[223]

Abdelouahab-reddam Z,Coloma F.Platinum supported on highly-dispersed ceria on activated carbon for the total oxidation of VOCs.APPL CATAL A-GEN2015;494:87-94

[224]

Chen H,Shao Y.Catalytic activity and stability of porous Co–Cu–Mn mixed oxide modified microfibrous-structured ZSM-5 membrane/PSSF catalyst for VOCs oxidation.RSC Adv2014;4:55202-9

[225]

Liao Y,Peng R,Ye D.Catalytic properties of manganese oxide polyhedra with hollow and solid morphologies in toluene removal.Appl Surf Sci2017;405:20-8

[226]

Durme J, Dewulf J, Sysmans W, Leys C, Van Langenhove H. Abatement and degradation pathways of toluene in indoor air by positive corona discharge.Chemosphere2007;68:1821-9

[227]

Chao CY,Hui KS.Potential use of a combined ozone and zeolite system for gaseous toluene elimination.J Hazard Mater2007;143:118-27

[228]

Qin C,Zhao J,Kang Z.Removal of toluene by sequential adsorption-plasma oxidation: mixed support and catalyst deactivation.J Hazard Mater2017;334:29-38

[229]

Trinh QH,Mok YS.Adsorption and plasma-catalytic oxidation of acetone over zeolite-supported silver catalyst.Jpn J Appl Phys2015;54:01AG04

[230]

Vepek S.Mechanism of the deactivation of Hopcalite catalysts studied by XPS, ISS, and other techniques.J Catal1986;100:250-63

[231]

Qin C,Bai W.Kinetics study on non-thermal plasma mineralization of adsorbed toluene over γ-Al2O3 hybrid with zeolite.J Hazard Mater2019;369:430-8

[232]

Shayegan Z,Haghighat F.TiO2 photocatalyst for removal of volatile organic compounds in gas phase – a review.Chem Eng J2018;334:2408-39

[233]

Tseng TK,Chen YJ.A review of photocatalysts prepared by sol-gel method for VOCs removal.Int J Mol Sci2010;11:2336-61 PMCID:PMC2904920

[234]

Zou W,Ok YS.Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review.Chemosphere2019;218:845-59

[235]

Huang Y,Lu Y.Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect.Molecules2016;21:56 PMCID:PMC6273848

[236]

Li H,Drdova S,Zhang L.Dual-function surface hydrogen bonds enable robust O2 activation for deep photocatalytic toluene oxidation.Catal Sci Technol2021;11:319-31

[237]

Wang L,Wu S.Nonstoichiometric tungsten oxide residing in a 3D nitrogen doped carbon matrix, a composite photocatalyst for oxygen vacancy induced VOC degradation and H 2 production.Catal Sci Technol2018;8:1366-74

[238]

Weon S,Choi W.Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation.Environ Sci : Nano2019;6:3185-214

[239]

Zhang W,Yin H,Zhao H.Adsorption and desorption mechanism of aromatic VOCs onto porous carbon adsorbents for emission control and resource recovery: recent progress and challenges.Environ Sci : Nano2022;9:81-104

[240]

Chen R,Wang H.Photocatalytic reaction mechanisms at a gas–solid interface for typical air pollutant decomposition.J Mater Chem A2021;9:20184-210

[241]

Xu H,Nie Z.Photocatalytic oxidation of a volatile organic component of acetaldehyde using titanium oxide nanotubes.J Nanomater2006;2006:1-8

[242]

Liu Z,Nishimoto S,Fujishima A.Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays.Environ Sci Technol2008;42:8547-51

[243]

Wang M,Sun L,Lin Z.Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis.Energy Environ Sci2014;7:2182

[244]

Liu R,Peng A.A facile preparation of TiO2/ACF with C Ti bond and abundant hydroxyls and its enhanced photocatalytic activity for formaldehyde removal.Appl Surf Sci2018;427:608-16

[245]

An T,Nie X.Synthesis of carbon nanotube-anatase TiO2 sub-micrometer-sized sphere composite photocatalyst for synergistic degradation of gaseous styrene.ACS Appl Mater Interfaces2012;4:5988-96

[246]

Tieng S,Chhor K.New homogeneously doped Fe (III)–TiO2 photocatalyst for gaseous pollutant degradation.APPL CATAL A-GEN2011;399:191-7

[247]

Murcia J,Navío J,Ciambelli P.Ethanol partial photoxidation on Pt/TiO2 catalysts as green route for acetaldehyde synthesis.Catal Today2012;196:101-9

[248]

Shaban M,Abukhadra MR.TiO2 nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization, and application.Sci Rep2018;8:781 PMCID:PMC5768712

[249]

Khan ME,Cho MH.Recent progress of metal-graphene nanostructures in photocatalysis.Nanoscale2018;10:9427-40

[250]

Roso M,Bonora R,Lorenzetti A.Nanostructured active media for volatile organic compounds abatement: the synergy of graphene oxide and semiconductor coupling.Ind Eng Chem Res2018;57:16635-44

[251]

Colón G,Hidalgo M.Cu-doped TiO2 systems with improved photocatalytic activity.Appl Catal B2006;67:41-51

[252]

Yang SB,Tayade RJ.Iron-functionalized titanium dioxide on flexible glass fibers for photocatalysis of benzene, toluene, ethylbenzene, and o-xylene (BTEX) under visible- or ultraviolet-light irradiation.J Air Waste Manag Assoc2015;65:365-73

[253]

Bensouici F,Dakhel A.Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films.Appl Surf Sci2017;395:110-6

[254]

Shaban M,Shehata N,Rabie AM.Ni-doped and Ni/Cr co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of methylene blue.J Colloid Interface Sci2019;555:31-41

[255]

Dong F,Wu Z.One-step “Green” synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity.J Phys Chem C2009;113:16717-23

[256]

Dong F,Wang H,Wu Z.Enhancement of the visible light photocatalytic activity of c-doped TiO2 nanomaterials prepared by a green synthetic approach.J Phys Chem C2011;115:13285-92

[257]

Higashimoto S,Nakagawa Y,Ohue H.Effective photocatalytic decomposition of VOC under visible-light irradiation on N-doped TiO2 modified by vanadium species.APPL CATAL A-GEN2008;340:98-104

[258]

Mogal SI,Mishra M.Single-step synthesis of silver-doped titanium dioxide: influence of silver on structural, textural, and photocatalytic properties.Ind Eng Chem Res2014;53:5749-58

[259]

Nie L,Lu A.Pd/TiO 2 @ carbon microspheres derived from chitin for highly efficient photocatalytic degradation of volatile organic compounds.ACS Sustainable Chem Eng2019;7:1658-66

[260]

Guan K.Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films.Surf Coat Technol2005;191:155-60

[261]

Zou L,Hooper M.Removal of VOCs by photocatalysis process using adsorption enhanced TiO2–SiO2 catalyst.Chem Eng Process2006;45:959-64

[262]

Yu J,Zhao X.The effect of SiO2 addition on the grain size and photocatalytic activity of TiO2 thin films.J Sol-Gel Sci Technol2002;24:95-103.

[263]

Sumitsawan S,Sattler ML.Plasma surface modified TiO2 nanoparticles: improved photocatalytic oxidation of gaseous m-xylene.Environ Sci Technol2011;45:6970-7

[264]

Arai T,Yanagida M,Sugihara H.Complete oxidation of acetaldehyde and toluene over a Pd/WO (3) photocatalyst under fluorescent- or visible-light irradiation.Chem Commun (Camb)2008;43:5565-7

[265]

Hou Y,Wu L,Fu X.Efficient decomposition of benzene over a beta-Ga2O3 photocatalyst under ambient conditions.Environ Sci Technol2006;40:5799-803

[266]

Chen LC,Yang TC,Huang CM.In situ DRIFT and kinetic studies of photocatalytic degradation on benzene vapor with visible-light-driven silver vanadates.J Hazard Mater2010;178:644-51

[267]

Kim J.Response to comment on “Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light”.Environ Sci Technol2011;45:3183-4

[268]

Yan T,Shi X,Li Z.Efficient photocatalytic degradation of volatile organic compounds by porous indium hydroxide nanocrystals.Environ Sci Technol2010;44:1380-5

[269]

Zhang W,Wang H.Crystal facet-dependent frustrated Lewis pairs on dual-metal hydroxide for photocatalytic CO2 reduction..Appl Catal B Environ2022;300:120748

[270]

Lu KQ,Zhang F.Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction.Nat Commun2020;11:5181 PMCID:PMC7560743

[271]

Fresno F,Tudela D,Soria J.Photocatalytic degradation of toluene over doped and coupled (Ti,M)O2 (M=Sn or Zr) nanocrystalline oxides: Influence of the heteroatom distribution on deactivation.Appl Catal B2008;84:598-606

[272]

Han Z,Wang X,Hildemann L.Experimental study on visible-light induced photocatalytic oxidation of gaseous formaldehyde by polyester fiber supported photocatalysts.Chem Eng J2013;218:9-18

[273]

Yang L,Shi J,Hu H.Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO2/UV processes.Sep Purif Technol2007;54:204-11

[274]

Ameen M.Reversible catalyst deactivation in the photocatalytic oxidation of diluteo-xylene in air.J Catal1999;184:112-22

[275]

Mamaghani AH,Lee C.Photocatalytic oxidation of MEK over hierarchical TiO2 catalysts: effect of photocatalyst features and operating conditions.Appl Catal B2019;251:1-16

[276]

Shayegan Z,Lee C.Photocatalytic oxidation of volatile organic compounds for indoor environment applications: three different scaled setups.Chem Eng J2019;357:533-46

[277]

Héquet V,Debono O,Locoge N.Photocatalytic oxidation of VOCs at ppb level using a closed-loop reactor: the mixture effect.Appl Catal B2018;226:473-86

AI Summary AI Mindmap
PDF

256

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/