Molecular chemisorption: a new conceptual paradigm for hydrogen storage

Chengguang Lang , Yi Jia , Xuecheng Yan , Liuzhang Ouyang , Min Zhu , Xiangdong Yao

Chemical Synthesis ›› 2022, Vol. 2 ›› Issue (1) : 1

PDF
Chemical Synthesis ›› 2022, Vol. 2 ›› Issue (1) :1 DOI: 10.20517/cs.2021.15
review-article

Molecular chemisorption: a new conceptual paradigm for hydrogen storage

Author information +
History +
PDF

Abstract

Developing efficient hydrogen storage materials and the corresponding methods is the key to successfully realizing the “hydrogen economy”. The ideal hydrogen storage materials should be capable of reversibly ab-/desorbing hydrogen under mild temperatures with high hydrogen capacities. To achieve this target, the ideal enthalpy of adsorption is determined to be 15-50 kJ/mol for hydrogen storage. However, the current mainstream methods, including molecular physisorption and atomic chemisorption, possess either too high or too low enthalpy of hydrogen adsorption, which are not suitable for practical application. To this end, hydrogen storage via molecular chemisorption is perceived to regulate the adsorption enthalpy with intermediate binding energy between the molecular physisorption and atomic chemisorption, enabling the revisable hydrogen ad-/desorption possible under ambient temperatures. In this review, we will elaborate the molecular chemisorption as a new conceptual paradigm and materials design to advance future solid-state hydrogen storage.

Keywords

Molecular chemisorption / hydrogen storage / coordination structure / adsorption sites

Cite this article

Download citation ▾
Chengguang Lang, Yi Jia, Xuecheng Yan, Liuzhang Ouyang, Min Zhu, Xiangdong Yao. Molecular chemisorption: a new conceptual paradigm for hydrogen storage. Chemical Synthesis, 2022, 2(1): 1 DOI:10.20517/cs.2021.15

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Weidenthaler C.Solid-state hydrogen storage for mobile applications: Quo Vadis?.Energy Environ Sci2011;4:2495

[2]

Hwang HT.Hydrogen storage for fuel cell vehicles.Curr Opin Chem Eng2014;5:42-8

[3]

Lang C,Yao X.Recent advances in liquid-phase chemical hydrogen storage.Energy Stor Mater2020;26:290-312

[4]

Schlapbach L and Züttel A.Hydrogen-storage materials for mobile applications. Nature 2001;414:353-8.

[5]

Dalebrook AF,Grasemann M,Laurenczy G.Hydrogen storage: beyond conventional methods.Chem Commun (Camb)2013;49:8735-51

[6]

Chen Z,Idrees KB,Farha OK.Porous materials for hydrogen storage.Chem2022;

[7]

Li Y,Dong H,Liu Y.Polyacrylonitrile-based highly porous carbon materials for exceptional hydrogen storage.Int J Hydrogen Energy2019;44:23210-5

[8]

Blankenship LS,Mokaya R.Oxygen-rich microporous carbons with exceptional hydrogen storage capacity.Nat Commun2017;8:1545 PMCID:PMC5691040

[9]

Germain J,Svec F.Nanoporous polymers for hydrogen storage.Small2009;5:1098-111

[10]

Sun G,Shen H.Physisorption of molecular hydrogen on carbon nanotube with vacant defects.J Chem Phys2014;140:204712

[11]

Panchariya DK,Anil Kumar E.Core-shell zeolitic imidazolate frameworks for enhanced hydrogen storage.ACS Omega2018;3:167-75 PMCID:PMC6641309

[12]

Lee S,Kim Y,Lee K.Recent progress using solid-state materials for hydrogen storage: a short review.Processes2022;10:304

[13]

Shayeganfar F.Oxygen- and lithium-doped hybrid boron-nitride/carbon networks for hydrogen storage.Langmuir2016;32:13313-21

[14]

Yu H,Auroux A.Hydrogen storage and release: kinetic and thermodynamic studies of MgH2 activated by transition metal nanoparticles.Int J Hydrogen Energy2014;39:11633-41

[15]

Zhang J,Wu Y.Recent advances on the thermal destabilization of Mg-based hydrogen storage materials.RSC Adv2019;9:408-28

[16]

Luo Q,Li B,Shao H.Kinetics in Mg-based hydrogen storage materials: enhancement and mechanism.J Magnes Alloy2019;7:58-71

[17]

Cao Z,Wu Y.Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg85In5Al5Ti5 alloy synthesized by plasma milling.J Alloys Compd2015;623:354-8

[18]

Konarova M,Norberto Beltramini J.Effects of nano-confinement on the hydrogen desorption properties of MgH2.Nano Energy2013;2:98-104

[19]

Martelli P,Remhof A,Borgschulte A.Stability and decomposition of NaBH4.J Phys Chem C2010;114:7173-7

[20]

Urgnani J,Palumbo M.Hydrogen release from solid state NaBH4.Int J Hydrogen Energy2008;33:3111-5

[21]

Mao J,Guo Z,Wu Z.Enhanced hydrogen storage performances of NaBH4-MgH2 system.J Alloys Compd2009;479:619-23

[22]

García-holley P,Islamoglu T.Benchmark study of hydrogen storage in metal-organic frameworks under temperature and pressure swing conditions.ACS Energy Lett2018;3:748-54

[23]

Kubas GJ,Swanson BI,Wasserman HJ.Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2) (M = molybdenum or tungsten; R = Cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand.J Am Chem Soc1984;106:451-2

[24]

Mingos D.Recent developments in theoretical organometallic chemistry. Elsevier; 1977. p. 1-51.

[25]

Mrtensson A,Andersson S.Observation of molecular H2 chemisorption on a nickel surface.Phys Rev Lett1986;57:2045-8

[26]

Berwanger J,Mankovsky S,Giessibl FJ.Atomically resolved chemical reactivity of small Fe clusters.Phys Rev Lett2020;124:096001

[27]

Vitillo JG,Chavan S.Role of exposed metal sites in hydrogen storage in MOFs.J Am Chem Soc2008;130:8386-96

[28]

Zhou W.Nature and tunability of enhanced hydrogen binding in metal-organic frameworks with exposed transition metal sites.J Phys Chem C2008;112:8132-5

[29]

Liu Y,Dong W,Wang H.Structural characterization of a boron(III) η2-σ-silane-complex.J Am Chem Soc2019;141:8358-63

[30]

Niu J,Jena P.Binding of hydrogen molecules by a transition-metal ion.Phys Rev Lett1992;68:2277-80

[31]

Zhang B,Zhang J,De S.Stabilizing a Platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity.Angew Chem2016;128:8459-63

[32]

Zhang L,Jia Y.Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction.J Am Chem Soc2018;140:10757-63

[33]

Hammer B.Theoretical surface science and catalysis-calculations and concepts. Impact of Surface Science on Catalysis. Elsevier; 2000. pp. 71-129.

[34]

Hamaed A,Antonelli DM.H2 storage materials (22 KJ/mol) using organometallic Ti fragments as sigma-H2 binding sites.J Am Chem Soc2008;130:6992-9

[35]

Hoang TKA,Trudeau M.Bis(benzene) and Bis(cyclopentadienyl) V and Cr doped mesoporous silica with high enthalpies of hydrogen adsorption.J Phys Chem C2009;113:17240-6

[36]

Xu G,Li N.High capacity hydrogen storage at room temperature via physisorption in a coordinatively unsaturated iron complex.Int J Hydrogen Energy2015;40:16330-7

[37]

Hoang TK,Moula G,Trudeau M.Kubas-type hydrogen storage in V(III) polymers using tri- and tetradentate bridging ligands.J Am Chem Soc2011;133:4955-64

[38]

Hoang TK,Mai HV.Design and synthesis of vanadium hydrazide gels for Kubas-type hydrogen adsorption: a new class of hydrogen storage materials.J Am Chem Soc2010;132:11792-8

[39]

Skipper CVJ,Kaltsoyannis N.Are metal-metal interactions involved in the rising enthalpies observed in the Kubas binding of H2 to hydrazine-linked hydrogen storage materials?.J Phys Chem C2012;116:19134-44

[40]

Zhang L,Gao G.Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions.Chem2018;4:285-97

[41]

Yang Q,Wei F.Understanding the Activity of Co-N4-xCx in atomic metal catalysts for oxygen reduction catalysis.Angew Chem2020;132:6178-83

[42]

Tao L,Dou S.Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction.Chem Commun (Camb)2016;52:2764-7

[43]

Zhu X,Chen C.Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis.Nano Energy2020;71:104597

[44]

Zhuang L,Liu H.Defect-Induced Pt-Co-Se coordinated sites with highly asymmetrical electronic distribution for boosting oxygen-involving electrocatalysis.Adv Mater2019;31:e1805581

[45]

Wang X,Si H.Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2.J Am Chem Soc2020;142:4298-308

[46]

Xiong P,Zhang F.Two-dimensional unilamellar cation-deficient metal oxide nanosheet superlattices for high-rate sodium ion energy storage.ACS Nano2018;12:12337-46

[47]

Liu B,Peng HQ.Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting.Adv Mater2018;:e1803144

[48]

Dou Y,Zhang L.Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy.Nat Commun2020;11:1664 PMCID:PMC7125230

[49]

Zhuang L,Liu H.Sulfur-modified oxygen vacancies in iron-cobalt oxide nanosheets: enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark.Angew Chem Int Ed Engl2020;59:14664-70

AI Summary AI Mindmap
PDF

28

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/