Future prospects in boron chemistry: new boron compounds and Lewis acids for catalysis and materials science

Guillaume Berionni

Chemical Synthesis ›› 2021, Vol. 1 ›› Issue (1) : 10

PDF
Chemical Synthesis ›› 2021, Vol. 1 ›› Issue (1) :10 DOI: 10.20517/cs.2021.11
Perspective

Future prospects in boron chemistry: new boron compounds and Lewis acids for catalysis and materials science

Author information +
History +
PDF

Abstract

Boron-containing compounds have a wide range of structures and rich and multifaceted reactivity patterns. As a result, these compounds are being increasingly used in organometallic, supramolecular, organic and inorganic chemistry, as well as in catalysis and materials science. This perspective describes recent ground-breaking studies and their implications for the future development of new catalysts and materials containing one or several trivalent boron atoms.

Keywords

Boron chemistry / organoboron compounds / boron Lewis acids / boron materials / boronic acid derivatives / organoboranes

Cite this article

Download citation ▾
Guillaume Berionni. Future prospects in boron chemistry: new boron compounds and Lewis acids for catalysis and materials science. Chemical Synthesis, 2021, 1(1): 10 DOI:10.20517/cs.2021.11

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Budiman YP,Radius U.Fluorinated aryl boronates as building blocks in organic synthesis.Adv Synth Cat2021;363:2224-55

[2]

Carden JL,Melen RL.Halogenated triarylboranes: synthesis, properties and applications in catalysis.Chem Soc Rev2020;49:1706-25

[3]

Shah S,Neelakandan PP.Advances in the supramolecular chemistry of tetracoordinate boron-containing organic molecules into organogels and mesogens.Front Chem2021;9:708854

[4]

Wang H,Noble A.Stereospecific 1,2-migrations of boronate complexes induced by electrophiles.Angew Chem Int Ed Engl2020;59:16859-72 PMCID:PMC7540471

[5]

Hirano K.Inter-element boration reactions of carbon-carbon multiple bonds via lewis-basic activation of boron reagents.Adv Synth Cat2021;363:2340-53

[6]

Sacramento M,Barcellos AM,Lenardão EJ.Transition-metal-free C-S, C-Se, and C-Te bond formation from organoboron compounds.Chem Rec2021;

[7]

Yang K.Tetracoordinate boron intermediates enable unconventional transformations.Acc Chem Res2021;54:2298-312

[8]

Taniguchi T.Advances in chemistry of N-heterocyclic carbene boryl radicals.Chem Soc Rev2021;50:8995-9021

[9]

Maza RJ,Carbó JJ.Mapping the electronic structure and the reactivity trends for stabilized α-boryl carbanions.Chemistry2021;27:12352-61

[10]

Kong L.Perspective on organoboron chemistry.Synlett2021;32:1316-22

[11]

Kaur U,Gayen S.Contemporary developments in transition metal boryl complexes: an overview.Chem Coord Rev2021;446:214106

[12]

Yadagiri B,Singh SP.Photoinduced borylation reactions: an overview.Asian J Org Chem2021;10:7-37

[13]

Tian YM,Braunschweig H,Marder TB.Photoinduced borylation for the synthesis of organoboron compounds.Chem Rev2021;121:3561-97

[14]

Tomasz K.Organoboron compounds in visible light-driven photoredox catalysis.Curr Org Chem2021;25:994-1027

[15]

Mayer RJ,Ofial AR.Lewis acidic boranes, lewis bases, and equilibrium constants: a reliable scaffold for a quantitative Lewis acidity/basicity scale.Chemistry2021;27:4070-80 PMCID:PMC7985883

[16]

Berger SM,Marder TB.Synthetic approaches to triarylboranes from 1885 to 2020.Chemistry2021;27:7043-58 PMCID:PMC8247992

[17]

Su X,Tidwell JR.9-borafluorenes: synthesis, properties, and reactivity.Chem Rev2021;121:4147-92

[18]

He J,Finze M.(Hetero)arene-fused boroles: a broad spectrum of applications.Chem Sci2020;12:128-47 PMCID:PMC8178973

[19]

Stoian C,Cucuiet TA.Bulky polyfluorinated terphenyldiphenylboranes: water tolerant Lewis acids.Chemistry2021;27:4327-31 PMCID:PMC7986919

[20]

Hasenbeck M.Boron-ligand cooperation: the concept and applications.Chemistry2021;27:5615-26 PMCID:PMC8048523

[21]

Zhang C,Su W,Ye Q.Synthesis, characterization, and density functional theory studies of three-dimensional inorganic analogues of 9,10-diboraanthracene-a new class of Lewis superacids.J Am Chem Soc2021;143:8552-8

[22]

Chardon A,Mahaut D,Berionni G.Non-planar boron Lewis acids taking the next step: development of tunable Lewis acids, Lewis superacids and bifunctional catalysts.Synlett2020;17:1639-48

[23]

Ben Saida A,Osi A.Pushing the Lewis acidity boundaries of boron compounds with non-planar triarylboranes derived from triptycenes.Angew Chem Int Ed Engl2019;58:16889-93

[24]

Chardon A,Mahaut D.Controlled generation of 9-boratriptycene by Lewis adduct dissociation: accessing a non-planar triarylborane.Angew Chem Int Ed Engl2020;59:12402-6

[25]

Houghton AY,Mansikkamäki A,Tuononen HM.Direct observation of a borane-silane complex involved in frustrated Lewis-pair-mediated hydrosilylations.Nat Chem2014;6:983-8

[26]

Full J,Götz J,Nowak-Król A.Modular synthesis of organoboron helically chiral compounds: cutouts from extended helices.Angew Chem Int Ed Engl2021;60:4350-7 PMCID:PMC7898935

[27]

Ando N,Narita H,Wagner M.Boron-doped polycyclic π-electron systems with an antiaromatic borole substructure that forms photoresponsive B-P Lewis adducts.J Am Chem Soc2021;143:9944-51

[28]

Budy H,Bolte M,Wagner M.A chemiluminescent tetraaryl diborane(4) tetraanion.Angew Chem Int Ed Engl2021;60:19397-405

[29]

Gotoh H,Tanaka H.Syntheses and physical properties of cationic BN-embedded polycyclic aromatic hydrocarbons.Angew Chem Int Ed Engl2021;60:12835-40

[30]

Chen M,Ramalakshmi R.A BN-doped cycloparaphenylene debuts.Angew Chem Int Ed Engl2021;60:1556-60

[31]

Chen X,Liao G.Highly emissive 9-borafluorene derivatives: synthesis, photophysical properties and device fabrication.Chemistry2021;27:6274-82 PMCID:PMC8048904

[32]

Soman R,Bhat IA.A2B- and A3-type boron(III)subchlorins derived from meso-diethoxycarbonyltripyrrane: synthesis and photophysical exploration.J Org Chem2021;86:10280-7

[33]

Adachi Y,Tazuhara S,Ohshita J.Thiophene-based twisted bistricyclic aromatic ene with tricoordinate boron: a new n-type semiconductor.Chem Commun (Camb)2021;57:1316-9

[34]

Manankandayalage C,Krempner C.Small molecule activation with intramolecular "inverse" frustrated Lewis pairs.Chemistry2021;27:6263-73

[35]

Zheng X,Heilmann A,Aldridge S.Colorimetric metal-free detection of carbon monoxide: reversible CO uptake by a BNB frustrated Lewis pair.Angew Chem Int Ed Engl2021;60:16416-9 PMCID:PMC8362209

[36]

Zhang YY,Xie R,Li B.Scalable, durable, and recyclable metal-free catalysts for highly efficient conversion of CO2 to cyclic carbonates.Angew Chem Int Ed Engl2020;59:23291-8

[37]

Yang GW,Xie R,Zhu XF.Pinwheel-shaped tetranuclear organoboron catalysts for perfectly alternating copolymerization of CO2 and epichlorohydrin.J Am Chem Soc2021;143:3455-65

[38]

Fontaine FG,Légaré MA.Design principles in frustrated Lewis pair catalysis for the functionalization of carbon dioxide and heterocycles.Coord Chem Rev2017;334:124-35

[39]

Zhao T,Wu Y.Hydrogenation of CO2 to formate with H2: transition metal free catalyst based on a Lewis pair.Angew Chem Int Ed Engl2019;58:722-6

[40]

Sitte NA,Grimme S.Frustrated Lewis pair catalyzed hydrogenation of amides: halides as active Lewis base in the metal-free hydrogen activation.J Am Chem Soc2019;141:159-62

[41]

Köring L,Bursch M,Paradies J.Hydrogenation of secondary amides using phosphane oxide and frustrated Lewis pair catalysis.Chemistry2021;

[42]

Sun Q,Mück-Lichtenfeld C,Kehr G.Reductive cleavage of the CO molecule by a reactive vicinal frustrated PH/BH Lewis pair.J Am Chem Soc2020;142:17260-4

[43]

Rej S.Transient imine as a directing group for the metal-free o-C-H borylation of benzaldehydes.J Am Chem Soc2021;143:2920-9

[44]

Légaré MA,Rochette É.BORON CATALYSIS. Metal-free catalytic C-H bond activation and borylation of heteroarenes.Science2015;349:513-6

[45]

Iqbal SA,Yuan K.Intramolecular (directed) electrophilic C-H borylation.Chem Soc Rev2020;

[46]

Lam J,Mosaferi E.FLP catalysis: main group hydrogenations of organic unsaturated substrates.Chem Soc Rev2019;48:3592-612

[47]

Fontaine FG.Boron Lewis pair mediated C-H activation and borylation.Synthesis2021;

[48]

Ma Y,Hou Z.Electron-deficient boron-based catalysts for C-H bond functionalisation.Chem Soc Rev2021;50:1945-67

[49]

Légaré MA,Braunschweig H.Metallomimetic chemistry of boron.Chem Rev2019;119:8231-61

[50]

Prey SE.Threat to the throne: can two cooperating boron atoms rival transition metals in chemical bond activation and catalysis?.Adv Synth Cat2021;363:2290-309

[51]

Liu Y,Li ZH.Methane activation by a borenium complex.Chem2021;7:1843-51

[52]

Osi A,Tumanov N.Taming the Lewis Superacidity of non-planar boranes: C-H bond activation and non-classical binding modes at Boron.Angew Chem Int Ed2021;

[53]

Basak S,Maiti D.Transition-metal-catalyzedC-H arylation using organoboron reagents.Synthesis2021;53:3151-79

[54]

Hoque ME,Chattopadhyay B.Remarkably efficient iridium catalysts for directed C(sp2)-H and C(sp3)-H borylation of diverse classes of substrates.J Am Chem Soc2021;143:5022-37

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/