The response of greenhouse gas emissions, crop yield, and soil health to water scarcity and biochar application in rice cultivation

Sriphirom Patikorn , Onchang Rattapon , Rossopa Benjamas , Chidthaisong Amnat

Crop and Environment ›› 2025, Vol. 4 ›› Issue (1) : 57 -71.

PDF
Crop and Environment ›› 2025, Vol. 4 ›› Issue (1) : 57 -71. DOI: 10.1016/j.crope.2024.12.005
Research article

The response of greenhouse gas emissions, crop yield, and soil health to water scarcity and biochar application in rice cultivation

Author information +
History +
PDF

Abstract

Projected climate change impacts, such as delayed rainfall and increased drought frequency, threaten rice cultivation and global food security. This study evaluated the effects of water scarcity at critical growth stages and biochar application on greenhouse gas (GHG) emissions, yield, and soil health in Central Thailand using the drought-tolerant cultivar Pathum Thani 1. Treatments included continuous flooding and water scarcity during tillering, reproductive, or both stages, with and without biochar, across wet and dry seasons. Water scarcity significantly reduced methane (CH4) emissions by inhibiting hydrogenotrophic methanogenesis (Methanocella) and acetoclastic methanogenesis (GOM Arc I of Methanosarcinales) but increased nitrous oxide (N2O) emissions via enhanced nitrification. Despite higher N2O emissions, total GHG emissions, expressed as the global warming potential (GWP), were lower under water-scarce conditions than under continuous flooding, with reductions of 27.1%, 43.0%, and 58.1% during tillering, reproductive, and both stages, respectively. Water scarcity during tillering stage maintained yield, whereas water scarcity during reproductive stage caused a significant reduction in yield. Biochar amendment further mitigated GHG emissions, improved yield by 12.2%, and enhanced soil health by increasing soil pH, nutrient availability, and soil organic carbon sequestration. Its high porosity and surface area also suppressed methanogenesis and reduced N2O formation while improving nutrient use efficiency. The strategic use of water restrictions during tillering, combined with biochar, provides a sustainable approach to mitigate GHG emissions, optimize water use, and sustain soil health and productivity. In resource-limited scenarios, prioritizing tillering-stage water scarcity over biochar application is recommended because of its greater GHG mitigation potential.

Keywords

Biochar amendment / Grain yield / Greenhouse gas emissions / Rice / Soil health / Water scarcity

Cite this article

Download citation ▾
Sriphirom Patikorn, Onchang Rattapon, Rossopa Benjamas, Chidthaisong Amnat. The response of greenhouse gas emissions, crop yield, and soil health to water scarcity and biochar application in rice cultivation. Crop and Environment, 2025, 4(1): 57-71 DOI:10.1016/j.crope.2024.12.005

登录浏览全文

4963

注册一个新账户 忘记密码

Abbreviations

amoA ammonia monooxygenase

AOB ammonia-oxidizing bacteria

AWD alternate wetting and drying

CH4 methane

DAT days after transplanting

DOC dissolved organic carbon

Eh soil redox potential

GHG greenhouse gas

GWP global warming potential

IWU irrigation water use

mcrA methyl coenzyme M reductase

NH4+ ammonium

nirK nitrite reductase

NO3 nitrate

N2O nitrous oxide

nosZ nitrous oxide reductase

pmoA particulate methane monooxygenase

SOC soil organic carbon

Availability of data and materials

Data will be available upon request.

Authors’ contributions

P.S., R.O., and A.C.: Conceptualization, manuscript writing, reviewing, and editing; P.S., B.R., and A.C.: Methodology; P.S. and B.R.: Investigation; P.S. and A.C.: Validation; and P.S.: Data curation, data analysis, funding acquisition, project administration, and supervision.

Declaration of competing interest

The authors declare that they have no conflicts of interest.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 32372216, 32172102, and 31671618), the China Postdoctoral Science Foundation (No. 2023M742963), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.crope.2024.12.005.

References

[1]

Aamer, M., Shaaban, M., Hassan, M.U., Huang, G., Liu, Y., Tang, H., Rasul, F., Ma, Q., Li, Z., Rasheed, A., Zhang, P., 2020. Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH. J. Environ. Manage. 255, 109891.

[2]

Adhikari, S., Moon, E., Timms, W., 2024. Identifying biochar production variables to maximise exchangeable cations and increase nutrient availability in soils. J. Clean. Prod. 446, 141454.

[3]

Amnuaylojaroen, T., Chanvichit, P., 2019. Projection of near-future climate change and agricultural drought in Mainland Southeast Asia under RCP8.5. Clim. Change 155, 175-193.

[4]

Amnuaylojaroen, T., Chanvichit, P., 2024. Historical analysis of the effects of drought on rice and maize yields in Southeast Asia. Resources 13, 44.

[5]

Bekchanova, M., Campion, L., Bruns, S., Kuppens, T., Lehmann, J., Jozefczak, M., Cuypers, A., Malina, R., 2024. Biochar improves the nutrient cycle in sandy-textured soils and increases crop yield: a systematic review. Environ. Evid. 13, 3.

[6]

Bhattacharjya, S., Chandra, R., Pareek, N., Raverkar, K.P., 2016. Biochar and crop residue application to soil: effect on soil biochemical properties, nutrient availability and yield of rice (Oryza sativa L.) and wheat (Triticum aestivum L.). Arch. Agron. Soil Sci. 62, 1095-1108.

[7]

Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., Huttley, G.A., Caporaso, J.G., 2018. Optimizing taxonomic classification of marker- gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1-17.

[8]

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo- Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852-857.

[9]

Boonwichai, S., Shrestha, S., Babel, M.S., Weesakul, S., Datta, A., 2018. Climate change impacts on irrigation water requirement, crop water productivity and rice yield in the Songkhram River Basin, Thailand. J. Clean. Prod. 198, 1157-1164.

[10]

Bouman, B.A.M., Lampayan, R.M., Tuong, T.P., 2007. Water Management in Irrigated Rice: Coping with Water Scarcity. The International Rice Research Institute (IRRI), Los Baños, Philippines.

[11]

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581-583.

[12]

Cayuela, M.L., Sánchez-Monedero, M.A., Roig, A., Hanley, K., Enders, A., Lehmann, J., 2013. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci Rep 3, 1732.

[13]

Cayuela, M.L., Van Zwieten, L., Singh, B.P., Jeffery, S., Roig, A., Sánchez-Monedero, M.A., 2014. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta- analysis. Agric. Ecosyst. Environ. 191, 5-16.

[14]

Chen, J., Li, S., Liang, C., Xu, Q., Li, Y., Qin, H., Fuhrmann, J.J., 2017. Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle size and addition rate. Sci. Total Environ. 574, 24-33.

[15]

Chew, J., Zhu, L., Nielsen, S., Graber, E., Mitchell, D.R., Horvat, J., Mohammed, M., Liu, M., Van Zwieten, L., Donne, S., Munroe, P., Taherymoosavi, S., Pace, B., Rawal, A., Hook, J., Marjo, C., Thomas, D.S., Pan, G., Li, L., Bian, R., McBeath, A., Bird, M., Thomas, T., Husson, O., Solaiman, Z., Joseph, S., Fan, X., 2020. Biochar- based fertilizer: Supercharging root membrane potential and biomass yield of rice. Sci. Total Environ. 713, 136431.

[16]

Chidambarampadmavathy, K., Obulisamy, P.K., Heimann, K., 2015. Role of copper and iron in methane oxidation and bacterial biopolymer accumulation. Eng. Life Sci. 15, 387-399.

[17]

Chidthaisong, A., Cha-un, N., Rossopa, B., Buddaboon, C., Kunuthai, C., Sriphirom, P., Towprayoon, S., Tokida, T., Padre, A.T., Minamikawa, K., 2018. Evaluating the effects of alternate wetting and drying (AWD) on methane and nitrous oxide emissions from a paddy field in Thailand. Soil Sci. Plant Nutr. 64, 31-38.

[18]

Conrad, R., 2002. Control of microbial methane production in wetland rice fields. Nutr. Cycl. Agroecosyst. 64, 59-69.

[19]

Datta, A., Ullah, H., Ferdous, Z., 2017. Water management in rice. In: ChauhanB., JabranK., MahajanG. ( RiceProduction Worldwide.Eds.), Springer, Berlin, Germany, pp. 255-277.

[20]

Davies, W.J., Zhang, J., Yang, J., Dodd, I.C., 2011. Novel crop science to improve yield and resource use efficiency in water-limited agriculture. J. Agric. Sci. 149, 123-131.

[21]

DDPM (Department of Disaster Prevention and Mitigation), 2022. National Disaster Prevention and Mitigation Plan.

[22]

Ding, X., Li, G., Zhao, X., Lin, Q., Wang, X., 2023. Biochar application significantly increases soil organic carbon under conservation tillage: an 11-year field experiment. Biochar 5, 28.

[23]

Dixon, P., 2003. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927-930.

[24]

Dong, D., Yang, M., Wang, C., Wang, H., Li, Y., Luo, J., Wu, W., 2013. Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field. J. Soils Sediments 13, 1450-1460.

[25]

Feng, Y., Xu, Y., Yu, Y., Xie, Z., Lin, X., 2012. Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol. Biochem. 46, 80-88.

[26]

Fernández, J.E., Alcon, F., Diaz-Espejo, A., Hernandez-Santana, V., Cuevas, M.V., 2020.

[27]

Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard. Agric. Water Manage. 237, 106074.

[28]

Fidel, R.B., Laird, D.A., Thompson, M.L., Lawrinenko, M., 2017. Characterization and quantification of biochar alkalinity. Chemosphere 167, 367-373.

[29]

Gheewala, S.H., Silalertruksa, T., Nilsalab, P., Lecksiwilai, N., Sawaengsak, W., Mungkung, R., Ganasut, J., 2018. Water stress index and its implication for agricultural land-use policy in Thailand. Int. J. Environ. Sci. Technol. 15, 833-846.

[30]

Hallin, S., Lindgren, P.E., 1999. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl. Environ. Microbiol. 65, 1652-1657.

[31]

Han, X., Sun, X., Wang, C., Wu, M., Dong, D., Zhong, T., Thies, J.E., Wu, W., 2016. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change. Sci Rep. 6, 24731.

[32]

Hayashi, K., Tokida, T., Kajiura, M., Yanai, Y., Yano, M., 2015. Cropland soil-plant systems control production and consumption of methane and nitrous oxide and their emissions to the atmosphere. Soil Sci. Plant Nutr. 61, 2-33.

[33]

Henry, S., Bru, D., Stres, B., Hallet, S., Philippot, L., 2006. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 72, 5181-5189.

[34]

Hester, E.R., Vaksmaa, A., Valé G., Monaco, S., Jetten, M.S., Lüke, C., 2022. Effect of water management on microbial diversity and composition in an Italian rice field system. FEMS Microbiol. Ecol. 98, fiac018.

[35]

Hossain, M.Z., Sikder, S., Husna, A., Sultana, S., Akhter, S., Alim, A., Joardar, J.C., 2020. Influence of water stress on morphology, physiology and yield contributing characteristics of rice. SAARC J. Agric. 18, 61-71.

[36]

Howe, E., Holton, K., Nair, S., Schlauch, D., Sinha, R., Quackenbush, J., 2010. Mev: MultiExperiment viewer. In: OchsM.F., CasagrandeJ.T., DavuluriR.V. ( BiomedicalInformatics for Cancer Research. Springer, New YorkUSA,Eds.), pp.267-277.

[37]

Howell, K.R., Shrestha, P., Dodd, I.C., 2015. Alternate wetting and drying irrigation maintained rice yields despite half the irrigation volume, but is currently unlikely to be adopted by smallholder lowland rice farmers in Nepal. Food Energy Secur. 4, 144-157.

[38]

Hussain, T., Hussain, N., Tahir, M., Raina, A., Ikram, S., Maqbool, S., Ali, M.F., Duangpan, S., 2022. Impacts of drought stress on water use efficiency and grain productivity of rice and utilization of genotypic variability to combat climate change. Agronomy 12, 2518.

[39]

IPCC (Intergovernmental Panel on Climate Change), 2021. Climate Change 2021: the Physical Science Basis. Cambridge University Press, Cambridge, UK and New York, USA.

[40]

IPCC (Intergovernmental Panel on Climate Change), 2022a. Climate Change 2022:Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, UK and New York, USA.

[41]

IPCC (Intergovernmental Panel on Climate Change), 2022b. Climate Change 2022:Mitigation of Climate Change. Cambridge University Press, Cambridge, UK and New York, USA.

[42]

Jeffery, S., Verheijen, F.G., van der Velde, M., Bastos, A.C., 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 144, 175-187.

[43]

Joseph, S., 2016. Determination of Carbon, Hydrogen, and Nitrogen in Biomass.

[44]

Joseph, S., Graber, E.R., Chia, C., Munroe, P., Donne, S., Thomas, T., Nielsen, S., Marjo, C., Rutlidge, H., Pan, G.X., Li, L., Taylor, P., Rawal, A., Hook, J., 2013. Shifting paradigms: development of high-efficiency biochar fertilizers based on nano- structures and soluble components. Carbon Manag. 4, 323-343.

[45]

Joseph, S.D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C.H., Hook, J., van Zwieten, L., Kimber, S., Cowie, A., Singh, B.P., Lehmann, J., Foidl, N., Smernik, R.J., Amonette, J.E., 2010. An investigation into the reactions of biochar in soil. Aust. J. Soil Res. 48, 501-515.

[46]

Kaewmai, R., Grant, T., Mungkalasiri, J., Musikavong, C., 2021. Assessing the water scarcity footprint of food crops by growing season available water remaining (AWARE) characterization factors in Thailand. Sci. Total Environ. 763, 143000.

[47]

Kindt, R., 2020. Redundancy Analysis with Vegan and BiodiversityR as an Alternative to Discriminant Analysis of Principal Components for the Analysis of Genetically Structured Populations.

[48]

Kolb, S., Knief, C., Stubner, S., Conrad, R., 2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl. Environ. Microbiol. 69, 2423-2429.

[49]

Koyama, S., Hayashi, H., 2019. Effects of single and successive applications of rice husk charcoal on paddy soil carbon content and rice productivity during two cropping seasons. Soil Sci. Plant Nutr. 65, 196-202.

[50]

Kumar, A., Nayak, A.K., Das, B.S., Panigrahi, N., Dasgupta, P., Mohanty, S., Kumar, U., Panneerselvam, P., Pathak, H., 2019. Effects of water deficit stress on agronomic and physiological responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO2. Sci. Total Environ. 650, 2032-2050.

[51]

Kumar, S., Dwivedi, S.K., Basu, S., Kumar, G., Mishra, J.S., Koley, T.K., Rao, K.K., Choudhary, A.K., Mondal, S., Kumar, S., Bhakta, N., Bhatt, B.P., Paul, R.K., Kumar, A., 2020. Anatomical, agro-morphological and physiological changes in rice under cumulative and stage specific drought conditions prevailed in eastern region of India. Field Crops Res. 245, 107658.

[52]

LaHue, G.T., Chaney, R.L., Adviento-Borbe, M.A., Linquist, B.A., 2016. Alternate wetting and drying in high yielding direct-seeded rice systems accomplishes multiple environmental and agronomic objectives. Agric. Ecosyst. Environ. 229, 30-39.

[53]

Lee, H.J., Jeong, S.E., Kim, P.J., Madsen, E.L., Jeon, C.O., 2015. High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy. Front. Microbiol. 6, 639.

[54]

Lee, J., Hopmans, J.W., Rolston, D.E., Baer, S.G., Six, J., 2009. Determining soil carbon stock changes: Simple bulk density corrections fail. Agric. Ecosyst. Environ. 134, 251-256.

[55]

Lehmann, J., 2007. A handful of carbon. Nature 447, 143-144.

[56]

Luton, P.E., Wayne, J.M., Sharp, R.J., Riley, P.W., 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiol. 148, 3521-3530.

[57]

Mallareddy, M., Thirumalaikumar, R., Balasubramanian, P., Naseeruddin, R., Nithya, N., Mariadoss, A., Eazhilkrishna, N., Choudhary, A.K., Deiveegan, M., Subramanian, E., Padmaja, B., Vijayakumar, S., 2023. Maximizing water use efficiency in rice farming: a comprehensive review of innovative irrigation management technologies. Water 15, 1802.

[58]

Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10-12.

[59]

Minamikawa, K., Tokida, T., Sudo, S., Padre, A., Yagi, K., 2015. Guidelines for Measuring CH4 and N2O Emissions from Rice Paddies by a Manually Operated Closed Chamber Method, first ed. National Institute for Agro-Environmental Sciences, Tsukuba, Japan.

[60]

Mohamad Shahimin, M.F., Foght, J.M., Siddique, T., 2021. Methanogenic biodegradation of iso-alkanes by indigenous microbes from two different oil sands tailings ponds. Microorganisms 9, 1569.

[61]

Moonmoon, S., Islam, M.T., 2017. Effect of drought stress at different growth stages on yield and yield components of six rice ( Oryza sativa L.) genotypes. Fundam. Appl. Agric. 2, 285-289.

[62]

Morales, J.A., de Graterol, L.S., Velasquez, H., de Nava, M.G., de Borrego, B.S., 1998. Determination by ion chromatography of selected organic and inorganic acids in rainwater at Maracaibo, Venezuela. J. Chromatogr. A 804, 289-294.

[63]

Norton, G.J., Shafaei, M., Travis, A.J., Deacon, C.M., Danku, J., Pond, D., Cochrane, N., Lockhart, K., Salt, D., Zhang, H., Dodd, I.C., Hossain, M., Islam, M.R., Price, A.H., 2017. Impact of alternate wetting and drying on rice physiology, grain production, and grain quality. Field Crops Res. 205, 1-13.

[64]

Odega, C.A., Ayodele, O.O., Ogutuga, S.O., Anguruwa, G.T., Adekunle, A.E., Fakorede, C.O., 2023. Potential application and regeneration of bamboo biochar for wastewater treatment: A review. Adv. Bamboo Sci. 2, 100012.

[65]

Oladele, S.O., Adeyemo, A.J., Awodun, M.A., 2019. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma 336, 1-11.

[66]

Oliveira, F.R., Patel, A.K., Jaisi, D.P., Adhikari, S., Lu, H., Khanal, S.K., 2017.

[67]

Environmental application of biochar: Current status and perspectives. Bioresour. Technol. 246, 110-122.

[68]

ONEP (Office of Natural Resources and Environmental Policy and Planning), 2022. Thailand's Fourth Biennial Update Report. ONEP, Minister of Natural Resources and Environment, Bangkok, Thailand.

[69]

Oo, A.Z., Sudo, S., Inubushi, K., Mano, M., Yamamoto, A., Ono, K., Osawa, T., Hayashida, S., Patra, P.K., Terao, Y., Elayakumar, P., Vanitha, K., Umamageswari, C., Jothimani, P., Ravi, V., 2018. Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agric. Ecosyst. Environ. 252, 148-158.

[70]

Pansu, M., Gautheyrou, J., 2006. Handbook of Soil Analysis. Springer, Berlin, Heidelberg, Germany.

[71]

Qiu, H., Yang, S., Jiang, Z., Xu, Y., Jiao, X., 2022. Effect of irrigation and fertilizer management on rice yield and nitrogen loss: a meta-analysis. Plant 11, 1690.

[72]

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glo€ckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590-D596.

[73]

Reim, A., Hernández, M., Klose, M., Chidthaisong, A., Yuttitham, M., Conrad, R., 2017.

[74]

Response of methanogenic microbial communities to desiccation stress in flooded and rain-fed paddy soil from Thailand. Front. Microbiol. 8, 785.

[75]

Rotthauwe, J.H., Witzel, K.P., Liesack, W., 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia- oxidizing populations. Appl. Environ. Microbiol. 63, 4704-4712.

[76]

Sahoo, S.S., Vijay, V.K., Chandra, R., Kumar, H., 2021. Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Cleaner Eng. Technol. 3, 100101.

[77]

Silalertruksa, T., Gheewala, S.H., Mungkung, R., Nilsalab, P., Lecksiwilai, N., Sawaengsak, W., 2017. Implications of water use and water scarcity footprint for sustainable rice cultivation. Sustainability 9, 2283.

[78]

Siopongco, J.D.L.C., Wassmann, R., Sander, B.O., 2013. Alternate Wetting and Drying in Philippine Rice Production: Feasibility Study for a Clean Development Mechanism. International Rice Research Institute, Los Baños, Philippines. Sriphirom, P., Chidthaisong, A., Towprayoon, S., 2019. Effect of alternate wetting and drying water management on rice cultivation with low emissions and low water used during wet and dry season. J. Clean. Prod. 223, 980-988.

[79]

Sriphirom, P., Chidthaisong, A., Yagi, K., Nobuntou, W., Luanmanee, S., Boonapatcharoen, N., Suksong, W., 2024a. Direct nitrous oxide emissions from a crop rotation of maize and mung bean after different long-term fertilizer applications in Thailand. Field Crops Res. 312, 109382.

[80]

Sriphirom, P., Chidthaisong, A., Yagi, K., Tripetchkul, S., Towprayoon, S., 2020.

[81]

Evaluation of biochar applications combined with alternate wetting and drying (AWD) water management in rice field as a methane mitigation option for farmers' adoption. Soil Sci. Plant Nutr. 66, 235-246.

[82]

Sriphirom, P., Rossopa, B., Boonapatcharoen, N., 2024b. Assessment of direct nitrous oxide emissions and emission factors from sugarcane plantations using different rates of chemical fertilizer application in western Thailand. Clean Technol. Environ. Policy 1-16.

[83]

Sriphirom, P., Towprayoon, S., Yagi, K., Rossopa, B., Chidthaisong, A., 2022. Changes in methane production and oxidation in rice paddy soils induced by biochar addition. Appl. Soil Ecol. 179, 104585.

[84]

Thakur, A.K., Rath, S., Patil, D.U., Kumar, A., 2011. Effects on rice plant morphology and physiology of water and associated management practices of the system of rice intensification and their implications for crop performance. Paddy Water Environ. 9, 13-24.

[85]

Thomas, D.H., Rey, M., Jackson, P.E., 2002. Determination of inorganic cations and ammonium in environmental waters by ion chromatography with a high-capacity cation-exchange column. J. Chromatogr. A 956, 181-186.

[86]

Tsien, H.C., Bratina, B.J., Tsuji, K., Hanson, R.S., 1990. Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Appl. Environ. Microbiol. 56, 2858-2865.

[87]

Uchida, Y., Moriizumi, M., Shimotsuma, M., 2019. Effects of rice husk biochar and soil moisture on the accumulation of organic and inorganic nitrogen and nitrous oxide emissions during the decomposition of hairy vetch (Vicia villosa) mulch. Soil Sci. Plant Nutr. 65, 409-418.

[88]

USDA (United States Department of Agriculture), 2020.Thailand: the impact of drought on agriculture in 2020.

[89]

Wang, C., Shen, J., Liu, J., Qin, H., Yuan, Q., Fan, F., Hu, Y., Wang, J., Wei, W., Li, Y., Wu, J., 2019. Microbial mechanisms in the reduction of CH 4 emission from double rice cropping system amended by biochar: A four-year study. Soil Biol. Biochem. 135, 251-263.

[90]

Watanabe, T., Kimura, M., Asakawa, S., 2007. Dynamics of methanogenic archaeal communities based on rRNA analysis and their relation to methanogenic activity in Japanese paddy field soils. Soil Biol. Biochem. 39, 2877-2887.

[91]

Wu, L., Tang, S., Hu, R., Wang, J., Duan, P., Xu, C., Zhang, W., Xu, M., 2023. Increased N2O emission due to paddy soil drainage is regulated by carbon and nitrogen availability. Geoderma 432, 116422.

[92]

Wu, Z., Song, Y., Shen, H., Jiang, X., Li, B., Xiong, Z., 2019. Biochar can mitigate methane emissions by improving methanotrophs for prolonged period in fertilized paddy soils. Environ. Pollut. 253, 1038-1046.

[93]

Yang, X., Wang, B., Chen, L., Li, P., Cao, C., 2019. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci Rep 9, 3742.

[94]

Zhang, A., Bian, R., Pan, G., Cui, L., Hussain, Q., Li, L., Zheng, J., Zheng, J., Zhang, X., Han, X., Yu, X., 2012. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 127, 153-160.

[95]

Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., Crowley, D., 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 139, 469-475.

[96]

Zhang, Q., Song, Y., Wu, Z., Yan, X., Gunina, A., Kuzyakov, Y., Xiong, Z., 2020. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. J. Clean. Prod. 242, 118435.

[97]

Zhang, X., Lv, Z., Sun, H., Bi, J., Zhang, J., Wang, C., Zhou, S., 2024. Crosstalk between methanogens and methanotrophs determines methane emissions in a rice paddy under different watering regimes. Appl. Soil Ecol. 195, 105229.

[98]

Zhang, Y., Zhao, X., Liu, F., Zhu, L., Yu, H., 2023. Effect of different water stress on growth index and yield of semi-late rice. Environ. Sci. Proc. 25, 84.

AI Summary AI Mindmap
PDF

544

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/