Computational Insights into the Interactions of Farnesoid X Receptor with Fargesone A, a Natural Product from Magnolia fargesii

Li Zhang , Yaqiong Chen , Weihua Li

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (1) : 146 -154.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (1) : 146 -154. DOI: 10.1007/s40242-024-4210-6
Article

Computational Insights into the Interactions of Farnesoid X Receptor with Fargesone A, a Natural Product from Magnolia fargesii

Author information +
History +
PDF

Abstract

Farnesoid X receptor (FXR) is a ligand-activated nuclear receptor and plays important roles in the regulation of metabolism and homeostasis of several important physiological substances, such as bile acids, glucose, and lipids. As such, FXR has become a promising therapeutic target for the treatment of several metabolic diseases and liver disorders. Recently, fargesone A (FA), a natural product from Magnolia fargesii was identified to be a novel, potent FXR agonist that demonstrated good in vitro and in vivo activities. However, the detailed interaction mechanism of FA with FXR remains unclear. In this study, we employed multiple computational approaches including molecular docking, molecular dynamics simulation, and binding free energy calculation to address the issue. By comparisons of the structural dynamics and binding free energies, an optimal binding mode was identified, in which FA interacts with FXR via a direct hydrogen bond with His447 and hydrophobic interactions with multiple residues, such as Leu287, Met290, Met328, Ile352, and Trp454. Two mutants, namely, H447F and L287N, were further constructed to validate the importance of the identified residues. We anticipate that these findings could be helpful for future rational design of new FA analogues targeting FXR.

Keywords

Farnesoid X receptor (FXR) / Binding mode / Molecular docking / Molecular dynamics / Fargesone A

Cite this article

Download citation ▾
Li Zhang, Yaqiong Chen, Weihua Li. Computational Insights into the Interactions of Farnesoid X Receptor with Fargesone A, a Natural Product from Magnolia fargesii. Chemical Research in Chinese Universities, 2025, 41(1): 146-154 DOI:10.1007/s40242-024-4210-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MakishimaM, OkamotoA Y, RepaJ J, TuH, LearnedR M, LukA, HullM V, LustigK D, MangelsdorfD J, ShanB Science, 1999, 284: 1362

[2]

ParksD J, BlanchardS G, BledsoeR K, ChandraG, ConslerT G, KliewerS A, StimmelJ B, WillsonT M, ZavackiA M, MooreD D, LehmannJ M Science, 1999, 284: 1365

[3]

WangH, ChenJ, HollisterK, SowersL C, FormanB Mol. Cell, 1999, 3: 543

[4]

FiorucciS, DistruttiE, CarinoA, ZampellaA, BiagioliM Prog. Lipid Res., 2021, 82: 101094

[5]

ChiangJ Y L J. Lipid Res., 2009, 50: 1955

[6]

FiorucciS, BiagioliM, BaldoniM, RicciP, SepeV, ZampellaA, DistruttiE Expert Opin. Drug Dis., 2021, 16: 1193

[7]

PanzittK, ZollnerG, MarschallH, WagnerM Mol. Cell. Endocrinol., 2022, 552: 111678

[8]

AdoriniL, TraunerM J. Hepatol., 2023, 79: 1317

[9]

FangY, HegazyL, FinckB N, ElgendyB J. Med. Chem., 2021, 64: 17545

[10]

XuY J. Med. Chem., 2016, 59: 6553

[11]

PellicciariR, FiorucciS, CamaioniE, ClericiC, CostantinoG, MaloneyP R, MorelliA, ParksD J, WillsonT M J. Med. Chem., 2002, 45: 3569

[12]

MullardA Nat. Rev. Drug Discov., 2020, 19: 501

[13]

YinY, WangM, GuW, ChenL Biochem. Pharmacol., 2021, 186: 114430

[14]

LiY, XuT, ZhaoY, ZhangH, LiuZ, WangH, HuangC, ShuZ, GaoL, XieR, JiaoT, ZhangD, ZhangD, LiangX, ZangY, SunY, LiuH, LiJ, ZhouY J. Med. Chem., 2024, 67: 5642

[15]

GuoF, ChenK, DongH, HuD, GaoY, LiuC, LaphookhieoS, LeiX JACS Au, 2022, 2: 2830

[16]

KimS, ChenJ, ChengT, GindulyteA, HeJ, HeS, LiQ, ShoemakerB A, ThiessenP A, YuB, ZaslavskyL, ZhangJ, BoltonE E Nucleic Acids Res., 2023, 51: D1373

[17]

LuC, WuC, GhoreishiD, ChenW, WangL, DammW, RossGA, DahlgrenM K, RussellE, Von BargenC D, AbelR, FriesnerR A, HardeE D J. Chem. Theory Comput., 2021, 17: 4291

[18]

Akwabi-AmeyawA, BassJ Y, CaldwellR D, CaravellaJ A, ChenL, CreechK L, DeatonD N, JonesS A, KaldorI, LiuY, MadaussK P, MarrH B, McFadyenR B, MillerA B, IiiF N, ParksD J, SpearingP K, ToddD, WilliamsS P, WiselyG B Bioorg. Med. Chem. Lett., 2008, 18: 4339

[19]

MiL, DevarakondaS, HarpJ M, HanQ, PellicciariR, WillsonT M, KhorasanizadehS, RastinejadF Mol. Cell, 2003, 11: 1093

[20]

MerkD, SreeramuluS, KudlinzkiD, SaxenaK, LinhardV, GandeS L, HillerF, LamersC, NilssonE, AagaardA, WisslerL, DekkerN, BambergK, Schubert-ZsilaveczM, SchwalbeH Nat. Commun., 2019, 10: 2915

[21]

FriesnerR A, BanksJ L, MurphyR B, HalgrenT A, KlicicJ J, MainzD T, RepaskyM P, KnollE H, ShelleyM, PerryJ K, ShawD E, FrancisP, ShenkinP S J. Med. Chem., 2004, 47: 1739

[22]

CaseD A, CheathamT E III, DardenT, GohlkeH, LuoR, MerzK M Jr., OnufrievA, SimmerlingC, WangB, WoodsR J J. Comput. Chem., 2005, 26: 1668

[23]

OlssonM H, SondergaardC R, RostkowskiM, JensenJ H J. Chem. Theory Comput., 2011, 7: 525

[24]

WangJ, WolfR M, CaldwellJ W, KollmanP A, CaseD A J. Comput. Chem., 2004, 25: 1157

[25]

MaierJ, MartinezC, KasavajhalaK, WickstromL, HauserK, SimmerlingC J. Chem. Theory Comput., 2015, 11: 3696

[26]

JorgensenW L, ChandrasekharJ, MaduraJ D, ImpeyR, KleinM L J. Chem. Phys., 1983, 79: 926

[27]

ChenY, LiJ, WuZ, LiuG, LiH, TangY, LiW J. Chem. Inf. Model., 2020, 60: 1540

[28]

LiW, FuJ, ChengF, ZhengM, ZhengM, ZhangJ, LiuG, TangY J. Chem. Inf. Model., 2012, 52: 3043

[29]

RuymgaartA P, HessB Eur. Phys. J.: Spec. Top., 2011, 200: 211

[30]

EssmannU, PereraL, BerkowitzW L, DardenT, LeeH, PedersenL G J. Chem. Phys., 1995, 103: 8577

[31]

RoeD R, CheathamT E J. Chem. Theory Comput., 2013, 9: 3084

[32]

GenhedenS, RydeU Expert Opin. Drug Discov., 2015, 10: 449

[33]

WangE, SunH, WangJ, WangZ, LiuH, ZhangJ Z H, HouT Chem. Rev., 2019, 119: 9478

[34]

WeiserJ, ShenkinP S, StillW C J. Comput. Chem., 1999, 20: 217

[35]

OnufrievA, BashfordD, CaseD A J. Phys. Chem. B, 2000, 104: 3712

[36]

BrooksB R, JanezicD, KarplusM J. Comput. Chem., 1995, 16: 1522

[37]

YuY, WangZ, WangL, TianS, HouT, SunH J. Cheminform., 2022, 14: 56

[38]

FengY, GongC, ZhuJ, LiuG, TangY, LiW J. Chem. Inf. Model., 2024, 64: 3451

[39]

AdasmeM F, LinnemannK L, BolzS N, KaiserF, SalentinS, HauptV J, SchroederM Nucleic Acids Res., 2021, 49: W530

[40]

De VivoM, MasettiM, BottegoniG, CavalliA J. Med. Chem., 2016, 59: 4035

[41]

Sledz P., Caflisch A., Curr. Opin. Struct Biol., 2018, 93.

[42]

HangJ, LvL, ZhuH, ZhangY, XuX, LongL, FuW Chem. Res. Chinese Universities, 2024, 40: 1201

[43]

ShenQ, ChenH, GaoD, ZhaoX, NaR, LiuJ, HuangX Chem. J. Chinese Universities, 2023, 44: 20220500

[44]

ZhouM, LiY Chem. Res. Chinese Universities, 2022, 38: 1400

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/