Direct Synthesis of UOS Zeolite Using a Simple and Commercially Available Organic Structure-directing Agent

Chao Hu , Wenhua Fu , Zhiqing Yuan , Chuang Liu , Zhendong Wang , Weimin Yang

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (1) : 113 -120.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (1) : 113 -120. DOI: 10.1007/s40242-024-4196-0
Article

Direct Synthesis of UOS Zeolite Using a Simple and Commercially Available Organic Structure-directing Agent

Author information +
History +
PDF

Abstract

The preparation of zeolite utilizing commercially available organic compounds instead of complex and expensive ones is of practical significance. Herein, we report the synthesis of germanosilicate zeolite with UOS framework by utilizing a simple and commercially available compound 3-diethylamino-1-propanol (DEAP) as organic structure-directing agent (OSDA) under fluoride condition. The synthesis has been optimized by rational modification of the variables, including the Si/Ge molar ratios, the amount of DEAP and F anions, the concentration of the synthesis gel and crystallization temperature. UOS zeolite materials were prepared with Si/Ge ratio in the range of 1–4. The physicochemical properties, including crystallinity, crystal morphology, chemical environment of framework elements, textural properties and acidity were characterized by multiple techniques. Ge atoms are proved to preferentially occupy the T sites in the double-four-ring (D4Rs) units. Compared to the isostructural IM-16 zeolite, the UOS zeolites prepared herein are of similar textural properties, such as specific surface area and micropore volume. The simple structure and commercial availability of DEAP endow this synthesis with a cost advantage over the conventional preparation of UOS zeolite, where an expensive imidazolium derivative is employed.

Keywords

UOS zeolite / Organic structure-directing agent / Hydrothermal synthesis / Physicochemical property

Cite this article

Download citation ▾
Chao Hu, Wenhua Fu, Zhiqing Yuan, Chuang Liu, Zhendong Wang, Weimin Yang. Direct Synthesis of UOS Zeolite Using a Simple and Commercially Available Organic Structure-directing Agent. Chemical Research in Chinese Universities, 2025, 41(1): 113-120 DOI:10.1007/s40242-024-4196-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KoikeN, IyokiK, WangB, YanabaY, ElangovanS P, ItabashiK, ChaikittisilpW, OkuboT Dalton Trans., 2018, 47: 9546

[2]

XiaH, HuY, BaoQ, ZhangJ, SunP, LiangD, WangB, QiaoX, WangX Microporous Mesoporous Mater., 2023, 350: 112442

[3]

TangX, WangY, WeiM, ZhangX, LiY, LiX, LiJ, YangJ Sep. Purif. Technol., 2023, 318: 124003

[4]

AbdiH, MaghsoudiH, AkhoundiV Fluid Phase Equilib., 2021, 546: 113171

[5]

LeeH I, LeeP S Microporous Mesoporous Mater., 2022, 334: 111768

[6]

WangX, MaY, WuQ, WenY, XiaoF-S Chem. Soc. Rev., 2022, 51: 2431

[7]

ZhengM, ChenY, LiuZ, LyuJ, YeB, SunM-H, ChenL-H, SuB-L Chem. Res. Chinese Universities, 2024, 40: 704

[8]

ChenL, JiaoW, WangC, ZhouH, LiuS, SuJ, WangY, YuJ, XueZ, MaoD Catal. Commun., 2023, 177: 106653

[9]

LiX, HanH, XuW, HwangS-J, ShiZ, LuP, BhanA, TsapatsisM J. Am. Chem. Soc., 2022, 144: 9324

[10]

GeL, QiuM, ZhuY, YangS, LiW, LiW, JiangZ, ChenX Appl. Catal., B, 2022, 319: 121958

[11]

SuH, ZhouQ, JinK, LiQ, WangY, FanW, ZhangJ-N, YanW Fuel, 2024, 376: 132651

[12]

WeiszP B Pure Appl. Chem., 1980, 52: 2091

[13]

LeeC, LeeS, KimW, RyooR Catal. Today, 2017, 303: 143

[14]

LiH, YuJ, DuK, LiW, DingL, ChenW, XieS, ZhangY, TangY Angew. Chem. Int. Ed., 2024, 63: e202405092

[15]

YuL, XuC, ZhangW, ZhouQ, FuX, LiangY, GuoZ, WangW J. Solid State Chem., 2023, 327: 121271

[16]

ZhangB, DouthwaiteM, LiuQ, ZhangC, WuQ, ShiR, WuP, LiuK, WangZ, LinW, ChengH, MaD, ZhaoF, HutchingsG J Green Chem., 2020, 22: 1630

[17]

JonscherC, SeifertM, KretzschmarN, MarschallM S, Le AnhM, DoertT, BusseO, WeigandJ J ChemCatChem, 2022, 14: e202101248

[18]

DaiW, ZhangL, LiuR, HuoZ, DaiW, GuanN Mater. Today Sustainability, 2023, 22: 100364

[19]

ChenP, XieM, ZhaiY, WangY, HuangZ, YangT, SunW, WangY, SunJ Chemistry: A European Journal, 2022, 28: e202202170

[20]

TsaplinD, GorbunovD, OstroumovaV, NaranovE, KulikovL, EgazaryantsS, MaximovA Mater. Chem. Phys., 2024, 326: 129825

[21]

RossoF, RizzettoA, AiriA, KhomaK, SignorileM, CrocellàV, BordigaS, GallianoS, BaroloC, AlladioE, BoninoF Inorg. Chem. Front., 2022, 9: 3372

[22]

LuanH, XuC, WuQ, XiaoF-S Front. Chem., 2022, 10: 1080554

[23]

WangS, ZhouL, GaoB, SuY, YangX Microporous Mesoporous Mater., 2022, 335: 111812

[24]

XiongG, YangH, LiuL, LiuJ RSC Adv., 2023, 13: 4835

[25]

ZhaoY, WuS, WangJ, PengM, XuH, JiangJ, MaY, WuP Angew. Chem. Int. Ed., 2024, 63: e202318298

[26]

PengM, DengQ, ZhaoY, XuH, GuanY, JiangJ, HanL, WuP Angew. Chem. Int. Ed., 2023, 62: e202217004

[27]

KempK C, ChoiW, JoD, ParkS H, HongS B Chemical Science, 2022, 13: 10455

[28]

CaiX, ZhaoY, ZiW, JiaoF, DuH Chemistry: A European Journal, 2022, 28: e202200934

[29]

HouX, YaoZ, LiH, WangM, WeiY, ZhangL, LiangY, QiaoJ, JiaJ, ZhangR Microporous Mesoporous Mater., 2023, 348: 112340

[30]

BnmnerG O, MeierW M Nature, 1989, 337: 146

[31]

SastreG, PulidoA, CastañedaR, CormaA J. Phys. Chem. B, 2004, 108: 8830

[32]

SastreG, PulidoA, CormaA Microporous Mesoporous Mater., 2005, 82: 159

[33]

PaillaudJ-L, HarbuzaruB, PatarinJ l, BatsN Science, 2004, 304: 990

[34]

CormaA, Díaz-CabañasM J, JordaJ L, ReyF, SastreG, StrohmaierK G J. Am. Chem. Soc., 2008, 130: 16482

[35]

TangL, ShiL, BonneauC, SunJ, YueH, OjuvaA, LeeB-L, KritikosM, BellR G, BacsikZ, MinkJ, ZouX Nat. Mater., 2008, 7: 381

[36]

LuoY, FuW, WangB, YuanZ, SunJ, ZouX, YangW Inorg. Chem., 2022, 61: 4371

[37]

DodinM, PaillaudJ-L, LorgouillouxY, CaulletP, ElkaïmE, BatsN J. Am. Chem. Soc., 2010, 132: 10221

[38]

LorgouillouxY, DodinM, PaillaudJ-L, CaulletP, MichelinL, JosienL, ErsenO, BatsN J. Solid State Chem., 2009, 182: 622

[39]

PengM, JiangJ, LiuX, MaY, JiaoM, XuH, WuH, HeM, WuP Chem. Eur. J., 2018, 24: 13297

[40]

LiX, CurnowO J, ChoiJ, YipA C K Mater. Today Chem., 2022, 26: 101133

[41]

ZhangY, LiA, SajadM, FulajtárováK, MazurM, KubůM, ShamzhyM, HronecM, BulánekR, ČejkaJ Chem. Eng. J., 2021, 412: 128599

[42]

CominE, AquinoA S, FaveroC, MignoniM L, de SouzaR F, de SouzaM O, PergherS B C, CamposC X d S, Bernardo-GusmãoK Mol. Catal., 2022, 530: 112624

[43]

GaoZ R, BalestraS R G, LiJ, CamblorM A Chemistry: A European Journal, 2021, 27: 18109

[44]

PengR, LiS, WanZ, WangZ-Q, SiX, TuoJ, XuH, GuanY, JiangJ, MaY, HeX, GongX-Q, WuP ACS Applied Materials & Interfaces, 2023, 15: 28116

[45]

EmeisC A J. Catal., 1993, 141: 347

[46]

CormaA, Díaz-CabañasM J, JordáJ L, MartínezC, MolinerM Nature, 2006, 443: 842

[47]

DorsetD L, StrohmaierK G, KliewerC E, CormaA, Díaz-CabañasM J, ReyF, GilmoreC J Chem. Mater., 2008, 20: 5325

[48]

YueQ, KasnerykV, MazurM, AbdiS, ZhouY, WheatleyP S, MorrisR E, ČejkaJ, ShamzhyM, OpanasenkoM J. Mater. Chem. A, 2024, 12: 802

[49]

GramatikovS P, PetkovP S, VayssilovG N Inorganic Chemistry Frontiers, 2022, 9: 3747

[50]

ShamzhyM, OpanasenkoM, TianY, KonyshevaK, ShvetsO, MorrisR E, ČejkaJ Chem. Mater., 2014, 26: 5789

[51]

ZhangJ, YueQ, ShammaE, AbdiS, PetrovO, ČejkaJ, MintovaS, OpanasenkoM, ShamzhyM J. Mater. Chem. A, 2024, 12: 31195

[52]

GaoZ R, LiJ, LinC, MayoralA, SunJ, CamblorM A Angew. Chem. Int. Ed., 2021, 60: 3438

[53]

VerheyenE, JoosL, Van HavenberghK, BreynaertE, KasianN, GobechiyaE, HouthoofdK, MartineauC, HintersteinM, TaulelleF, Van SpeybroeckV, WaroquierM, BalsS, van TendelooG, KirschhockC E A, MartensJ A Nat. Mater., 2012, 11: 1059

[54]

El-RozM, LakissL, VicenteA, BozhilovK N, Thibault-StarzykF, ValtchevV Chem. Sci., 2013, 5: 68

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

233

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/