Direct Synthesis of UOS Zeolite Using a Simple and Commercially Available Organic Structure-directing Agent

Chao Hu, Wenhua Fu, Zhiqing Yuan, Chuang Liu, Zhendong Wang, Weimin Yang

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (1) : 113-120.

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (1) : 113-120. DOI: 10.1007/s40242-024-4196-0
Article

Direct Synthesis of UOS Zeolite Using a Simple and Commercially Available Organic Structure-directing Agent

Author information +
History +

Abstract

The preparation of zeolite utilizing commercially available organic compounds instead of complex and expensive ones is of practical significance. Herein, we report the synthesis of germanosilicate zeolite with UOS framework by utilizing a simple and commercially available compound 3-diethylamino-1-propanol (DEAP) as organic structure-directing agent (OSDA) under fluoride condition. The synthesis has been optimized by rational modification of the variables, including the Si/Ge molar ratios, the amount of DEAP and F anions, the concentration of the synthesis gel and crystallization temperature. UOS zeolite materials were prepared with Si/Ge ratio in the range of 1–4. The physicochemical properties, including crystallinity, crystal morphology, chemical environment of framework elements, textural properties and acidity were characterized by multiple techniques. Ge atoms are proved to preferentially occupy the T sites in the double-four-ring (D4Rs) units. Compared to the isostructural IM-16 zeolite, the UOS zeolites prepared herein are of similar textural properties, such as specific surface area and micropore volume. The simple structure and commercial availability of DEAP endow this synthesis with a cost advantage over the conventional preparation of UOS zeolite, where an expensive imidazolium derivative is employed.

Cite this article

Download citation ▾
Chao Hu, Wenhua Fu, Zhiqing Yuan, Chuang Liu, Zhendong Wang, Weimin Yang. Direct Synthesis of UOS Zeolite Using a Simple and Commercially Available Organic Structure-directing Agent. Chemical Research in Chinese Universities, 2025, 41(1): 113‒120 https://doi.org/10.1007/s40242-024-4196-0

References

[[1]]
Koike N, Iyoki K, Wang B, Yanaba Y, Elangovan S P, Itabashi K, Chaikittisilp W, Okubo T Dalton Trans., 2018, 47: 9546.
CrossRef Google scholar
[[2]]
Xia H, Hu Y, Bao Q, Zhang J, Sun P, Liang D, Wang B, Qiao X, Wang X Microporous Mesoporous Mater., 2023, 350: 112442.
CrossRef Google scholar
[[3]]
Tang X, Wang Y, Wei M, Zhang X, Li Y, Li X, Li J, Yang J Sep. Purif. Technol., 2023, 318: 124003.
CrossRef Google scholar
[[4]]
Abdi H, Maghsoudi H, Akhoundi V Fluid Phase Equilib., 2021, 546: 113171.
CrossRef Google scholar
[[5]]
Lee H I, Lee P S Microporous Mesoporous Mater., 2022, 334: 111768.
CrossRef Google scholar
[[6]]
Wang X, Ma Y, Wu Q, Wen Y, Xiao F-S Chem. Soc. Rev., 2022, 51: 2431.
CrossRef Google scholar
[[7]]
Zheng M, Chen Y, Liu Z, Lyu J, Ye B, Sun M-H, Chen L-H, Su B-L Chem. Res. Chinese Universities, 2024, 40: 704.
CrossRef Google scholar
[[8]]
Chen L, Jiao W, Wang C, Zhou H, Liu S, Su J, Wang Y, Yu J, Xue Z, Mao D Catal. Commun., 2023, 177: 106653.
CrossRef Google scholar
[[9]]
Li X, Han H, Xu W, Hwang S-J, Shi Z, Lu P, Bhan A, Tsapatsis M J. Am. Chem. Soc., 2022, 144: 9324.
CrossRef Google scholar
[[10]]
Ge L, Qiu M, Zhu Y, Yang S, Li W, Li W, Jiang Z, Chen X Appl. Catal., B, 2022, 319: 121958.
CrossRef Google scholar
[[11]]
Su H, Zhou Q, Jin K, Li Q, Wang Y, Fan W, Zhang J-N, Yan W Fuel, 2024, 376: 132651.
CrossRef Google scholar
[[12]]
Weisz P B Pure Appl. Chem., 1980, 52: 2091.
CrossRef Google scholar
[[13]]
Lee C, Lee S, Kim W, Ryoo R Catal. Today, 2017, 303: 143.
CrossRef Google scholar
[[14]]
Li H, Yu J, Du K, Li W, Ding L, Chen W, Xie S, Zhang Y, Tang Y Angew. Chem. Int. Ed., 2024, 63: e202405092.
CrossRef Google scholar
[[15]]
Yu L, Xu C, Zhang W, Zhou Q, Fu X, Liang Y, Guo Z, Wang W J. Solid State Chem., 2023, 327: 121271.
CrossRef Google scholar
[[16]]
Zhang B, Douthwaite M, Liu Q, Zhang C, Wu Q, Shi R, Wu P, Liu K, Wang Z, Lin W, Cheng H, Ma D, Zhao F, Hutchings G J Green Chem., 2020, 22: 1630.
CrossRef Google scholar
[[17]]
Jonscher C, Seifert M, Kretzschmar N, Marschall M S, Le Anh M, Doert T, Busse O, Weigand J J ChemCatChem, 2022, 14: e202101248.
CrossRef Google scholar
[[18]]
Dai W, Zhang L, Liu R, Huo Z, Dai W, Guan N Mater. Today Sustainability, 2023, 22: 100364.
CrossRef Google scholar
[[19]]
Chen P, Xie M, Zhai Y, Wang Y, Huang Z, Yang T, Sun W, Wang Y, Sun J Chemistry: A European Journal, 2022, 28: e202202170.
CrossRef Google scholar
[[20]]
Tsaplin D, Gorbunov D, Ostroumova V, Naranov E, Kulikov L, Egazaryants S, Maximov A Mater. Chem. Phys., 2024, 326: 129825.
CrossRef Google scholar
[[21]]
Rosso F, Rizzetto A, Airi A, Khoma K, Signorile M, Crocellà V, Bordiga S, Galliano S, Barolo C, Alladio E, Bonino F Inorg. Chem. Front., 2022, 9: 3372.
CrossRef Google scholar
[[22]]
Luan H, Xu C, Wu Q, Xiao F-S Front. Chem., 2022, 10: 1080554.
CrossRef Google scholar
[[23]]
Wang S, Zhou L, Gao B, Su Y, Yang X Microporous Mesoporous Mater., 2022, 335: 111812.
CrossRef Google scholar
[[24]]
Xiong G, Yang H, Liu L, Liu J RSC Adv., 2023, 13: 4835.
CrossRef Google scholar
[[25]]
Zhao Y, Wu S, Wang J, Peng M, Xu H, Jiang J, Ma Y, Wu P Angew. Chem. Int. Ed., 2024, 63: e202318298.
CrossRef Google scholar
[[26]]
Peng M, Deng Q, Zhao Y, Xu H, Guan Y, Jiang J, Han L, Wu P Angew. Chem. Int. Ed., 2023, 62: e202217004.
CrossRef Google scholar
[[27]]
Kemp K C, Choi W, Jo D, Park S H, Hong S B Chemical Science, 2022, 13: 10455.
CrossRef Google scholar
[[28]]
Cai X, Zhao Y, Zi W, Jiao F, Du H Chemistry: A European Journal, 2022, 28: e202200934.
CrossRef Google scholar
[[29]]
Hou X, Yao Z, Li H, Wang M, Wei Y, Zhang L, Liang Y, Qiao J, Jia J, Zhang R Microporous Mesoporous Mater., 2023, 348: 112340.
CrossRef Google scholar
[[30]]
Bnmner G O, Meier W M Nature, 1989, 337: 146.
CrossRef Google scholar
[[31]]
Sastre G, Pulido A, Castañeda R, Corma A J. Phys. Chem. B, 2004, 108: 8830.
CrossRef Google scholar
[[32]]
Sastre G, Pulido A, Corma A Microporous Mesoporous Mater., 2005, 82: 159.
CrossRef Google scholar
[[33]]
Paillaud J-L, Harbuzaru B, Patarin J l, Bats N Science, 2004, 304: 990.
CrossRef Google scholar
[[34]]
Corma A, Díaz-Cabañas M J, Jorda J L, Rey F, Sastre G, Strohmaier K G J. Am. Chem. Soc., 2008, 130: 16482.
CrossRef Google scholar
[[35]]
Tang L, Shi L, Bonneau C, Sun J, Yue H, Ojuva A, Lee B-L, Kritikos M, Bell R G, Bacsik Z, Mink J, Zou X Nat. Mater., 2008, 7: 381.
CrossRef Google scholar
[[36]]
Luo Y, Fu W, Wang B, Yuan Z, Sun J, Zou X, Yang W Inorg. Chem., 2022, 61: 4371.
CrossRef Google scholar
[[37]]
Dodin M, Paillaud J-L, Lorgouilloux Y, Caullet P, Elkaïm E, Bats N J. Am. Chem. Soc., 2010, 132: 10221.
CrossRef Google scholar
[[38]]
Lorgouilloux Y, Dodin M, Paillaud J-L, Caullet P, Michelin L, Josien L, Ersen O, Bats N J. Solid State Chem., 2009, 182: 622.
CrossRef Google scholar
[[39]]
Peng M, Jiang J, Liu X, Ma Y, Jiao M, Xu H, Wu H, He M, Wu P Chem. Eur. J., 2018, 24: 13297.
CrossRef Google scholar
[[40]]
Li X, Curnow O J, Choi J, Yip A C K Mater. Today Chem., 2022, 26: 101133.
CrossRef Google scholar
[[41]]
Zhang Y, Li A, Sajad M, Fulajtárová K, Mazur M, Kubů M, Shamzhy M, Hronec M, Bulánek R, Čejka J Chem. Eng. J., 2021, 412: 128599.
CrossRef Google scholar
[[42]]
Comin E, Aquino A S, Favero C, Mignoni M L, de Souza R F, de Souza M O, Pergher S B C, Campos C X d S, Bernardo-Gusmão K Mol. Catal., 2022, 530: 112624.
CrossRef Google scholar
[[43]]
Gao Z R, Balestra S R G, Li J, Camblor M A Chemistry: A European Journal, 2021, 27: 18109.
CrossRef Google scholar
[[44]]
Peng R, Li S, Wan Z, Wang Z-Q, Si X, Tuo J, Xu H, Guan Y, Jiang J, Ma Y, He X, Gong X-Q, Wu P ACS Applied Materials & Interfaces, 2023, 15: 28116.
CrossRef Google scholar
[[45]]
Emeis C A J. Catal., 1993, 141: 347.
CrossRef Google scholar
[[46]]
Corma A, Díaz-Cabañas M J, Jordá J L, Martínez C, Moliner M Nature, 2006, 443: 842.
CrossRef Google scholar
[[47]]
Dorset D L, Strohmaier K G, Kliewer C E, Corma A, Díaz-Cabañas M J, Rey F, Gilmore C J Chem. Mater., 2008, 20: 5325.
CrossRef Google scholar
[[48]]
Yue Q, Kasneryk V, Mazur M, Abdi S, Zhou Y, Wheatley P S, Morris R E, Čejka J, Shamzhy M, Opanasenko M J. Mater. Chem. A, 2024, 12: 802.
CrossRef Google scholar
[[49]]
Gramatikov S P, Petkov P S, Vayssilov G N Inorganic Chemistry Frontiers, 2022, 9: 3747.
CrossRef Google scholar
[[50]]
Shamzhy M, Opanasenko M, Tian Y, Konysheva K, Shvets O, Morris R E, Čejka J Chem. Mater., 2014, 26: 5789.
CrossRef Google scholar
[[51]]
Zhang J, Yue Q, Shamma E, Abdi S, Petrov O, Čejka J, Mintova S, Opanasenko M, Shamzhy M J. Mater. Chem. A, 2024, 12: 31195.
CrossRef Google scholar
[[52]]
Gao Z R, Li J, Lin C, Mayoral A, Sun J, Camblor M A Angew. Chem. Int. Ed., 2021, 60: 3438.
CrossRef Google scholar
[[53]]
Verheyen E, Joos L, Van Havenbergh K, Breynaert E, Kasian N, Gobechiya E, Houthoofd K, Martineau C, Hinterstein M, Taulelle F, Van Speybroeck V, Waroquier M, Bals S, van Tendeloo G, Kirschhock C E A, Martens J A Nat. Mater., 2012, 11: 1059.
CrossRef Google scholar
[[54]]
El-Roz M, Lakiss L, Vicente A, Bozhilov K N, Thibault-Starzyk F, Valtchev V Chem. Sci., 2013, 5: 68.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/