A Computer Simulation Study on Deposition Patterns of Cyclic Diblock Copolymer Solution Nanodroplets: Influence of Polymer Length and Concentration

Hanwen Pei, Jun Zhang, Zhaoyan Sun

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 21-32.

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 21-32. DOI: 10.1007/s40242-024-4181-7
Article

A Computer Simulation Study on Deposition Patterns of Cyclic Diblock Copolymer Solution Nanodroplets: Influence of Polymer Length and Concentration

Author information +
History +

Abstract

Molecular dynamics simulations are conducted to investigate the deposition patterns of cyclic diblock copolymer solution nanodroplets on solid surfaces (walls). The primary focus is how initial polymer concentration, chain length, and solvent-wall interaction affect these patterns. Deposition patterns are categorized into phase diagrams, mainly composed of multihollow, coffee-ring, and multilayer structures. We also study the deposition of polymer blocks with different adsorption behavior by adjusting the interaction strength between the polymer block and the wall [ε A(B)W], including weakly adsorbable (ε A(B)W=0.6), moderately adsorbable (ε A(B)W=1.0), and strongly adsorbable (ε A(B)W=1.2) polymer blocks. This study identifies the key factors influencing the droplet’s deposition structure and elucidates the mechanisms behind pattern formation. The findings contribute to the design of deposition patterns for cyclic diblock copolymer solution nanodroplets, enhancing applications related to droplet evaporation.

Cite this article

Download citation ▾
Hanwen Pei, Jun Zhang, Zhaoyan Sun. A Computer Simulation Study on Deposition Patterns of Cyclic Diblock Copolymer Solution Nanodroplets: Influence of Polymer Length and Concentration. Chemical Research in Chinese Universities, 2024, 41(1): 21‒32 https://doi.org/10.1007/s40242-024-4181-7

References

[[1]]
Patel B B, Walsh D J, Kim D H, Kwok J, Lee B, Guironnet D, Diao Y Sci. Adv., 2020, 6: eaaz7202.
CrossRef Google scholar
[[2]]
Pan H M, Sarkar J, Goto A ACS Appl. Polym. Mater., 2022, 4: 8676.
CrossRef Google scholar
[[3]]
Falahati M, Ahmadvand P, Safaee S, Chang Y-C, Lyu Z, Chen R, Li L, Lin Y Mater. Today, 2020, 40: 215.
CrossRef Google scholar
[[4]]
Ding Z, Yuan C, Peng X, Wang T, Qi H J, Dunn M L Sci. Adv., 2017, 3: e1602890.
CrossRef Google scholar
[[5]]
Yang H, Leow W R, Wang T, Wang J, Yu J, He K, Qi D, Wan C, Chen X Adv. Mater., 2017, 61: 1009
[[6]]
Onses M S, Ramírez-Hernández A, Hur S-M, Sutanto E, Williamson L, Alleyne A G, Nealey P F, de Pablo J J, Rogers J Adv. Mater., 2014, 26: 6950.
CrossRef Google scholar
[[7]]
Kuang M, Wang L, Song Y Adv. Mater., 2014, 26: 6950.
CrossRef Google scholar
[[8]]
Politakos N Polymers, 2023, 15: 322.
CrossRef Google scholar
[[9]]
Wang S, Guo H, Wu Y Mater. Futures, 2023, 2: 012105.
CrossRef Google scholar
[[10]]
Guan J, Sun Z Chem. Res. Chinese Universities, 2023, 39: 741.
CrossRef Google scholar
[[11]]
Xiao J, Zhang M, Zhai F, Wei H, Liu S, Wang P, Liu Z, Ji Z, Wang X Mater. Futures, 2024, 3: 025001.
CrossRef Google scholar
[[12]]
Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S Adv. Mater., 2016, 28: 4449.
CrossRef Google scholar
[[13]]
Pan H M, Goto A Macromol. Rapid Commun., 2023, 44: 2300074.
CrossRef Google scholar
[[14]]
Lang C, Lloyd E C, Matuszewski K E, Xu Y, Ganesan V, Huang R, Kumar M, Hickey R J Nat. Nanotechnol., 2022, 17: 752.
CrossRef Google scholar
[[15]]
Cheng C-Y, Xie H, Xu Z-Y, Li L, Jiang M-N, Tang L, Yang K-K, Wang Y-Z Chem. Eng. J., 2020, 396: 125242.
CrossRef Google scholar
[[16]]
Ding F, Liu L-Y, Liu T-L, Li Y-Q, Li J-P, Sun Z-Y Chin. J. Polym. Sci., 2023, 41: 422.
CrossRef Google scholar
[[17]]
Ding P, Yin X, Wang Q, Kang X, Wu M, Zhu K, Wang X, Wang R, Xue G Langmuir, 2020, 36: 7289.
CrossRef Google scholar
[[18]]
Hu C, Lu T, Guo H J. Membr. Sci., 2018, 564: 146.
CrossRef Google scholar
[[19]]
Kang S, Kim G-H, Park S-J Acc. Chem. Res., 2022, 55: 2224.
CrossRef Google scholar
[[20]]
Xu F, Zhang J, Zhang P, Luan X, Mai Y Mater. Chem. Front., 2019, 3: 2283.
CrossRef Google scholar
[[21]]
Fan J, Han Y, Cui J Chem. J. Chinese Universities, 2021, 42: 857
[[22]]
Romio M, Trachsel L, Morgese G, Ramakrishna S N, Spencer N D, Benetti E M ACS Macro Lett., 2020, 9: 1024.
CrossRef Google scholar
[[23]]
Morgese G, Trachsel L, Romio M, Divandari M, Ramakrishna S N, Benetti E M Angew. Chem. Int. Ed., 2016, 55: 15583.
CrossRef Google scholar
[[24]]
Zhou J, Yang J, Ishaq M W, Li L Macromolecules, 2022, 55: 1398.
CrossRef Google scholar
[[25]]
Sikorski A Macromol. Theory Simul., 2001, 10: 38.
CrossRef Google scholar
[[26]]
Zhang L, Xia A, Xu Y Eur. Polym. J., 2000, 36: 847.
CrossRef Google scholar
[[27]]
Yamamoto T, Tezuka Y Soft Matter, 2015, 11: 7458.
CrossRef Google scholar
[[28]]
Divandari M, Morgese G, Trachsel L, Romio M, Dehghani E S, Rosenboom J-G, Paradisi C, Zenobi-Wong M, Ramakrishna S N, Benetti E M Macromolecules, 2017, 50: 7760.
CrossRef Google scholar
[[29]]
Sun Y, Tan R, Ma Z, Zhou D, Li J, Kong D, Dong X-H Giant, 2020, 4: 100037.
CrossRef Google scholar
[[30]]
Lynd N A, Hillmyer M A Macromolecules, 2005, 38: 8803.
CrossRef Google scholar
[[31]]
Lynd N A, Hillmyer M A Macromolecules, 2007, 40: 8050.
CrossRef Google scholar
[[32]]
Lynd N A, Meuler A J, Hillmyer M A Prog. Polym. Sci., 2008, 33: 875.
CrossRef Google scholar
[[33]]
Liu S, Wang L, Yuan S, Cao X Chem. J. Chinese Universities, 2019, 40: 1472
[[34]]
Dai L, Sun Z Chem. J. Chinese Universities, 2020, 41: 924
[[35]]
Li Z, Dormidontova E E Macromolecules, 2010, 43: 3521.
CrossRef Google scholar
[[36]]
Catarino Centeno R, Bustamante-Rendón R A, Hernández-Fragoso J S, Arroyo-Ordoñez I, Pérez E, Alas S J, Gama Goicochea A J. Mol. Model., 2017, 23: 306.
CrossRef Google scholar
[[37]]
Tang Y, Li C, Lin Y, Zhang C, Liu Z, Yu L, Wang H, Wang X Chem. J. Chinese Universities, 2022, 43: 281
[[38]]
Zang D, Zhao G, Liu X, Yin J, Ma S Chem. Res. Chinese Universities, 2019, 35: 299.
CrossRef Google scholar
[[39]]
Hu H, Larson R G J. Phys. Chem. B, 2006, 110: 7090.
CrossRef Google scholar
[[40]]
Jafari Kang S, Vandadi V, Felske J D, Masoud H Phys. Rev. E, 2016, 94: 063104.
CrossRef Google scholar
[[41]]
Diddens C, Kuerten J G M, van der Geld C W M, Wijshoff H M A J. Colloid Interface Sci., 2017, 487: 426.
CrossRef Google scholar
[[42]]
Wen Y, Kim P Y, Shi S, Wang D, Man X, Doi M, Russell T P Soft Matter, 2019, 15: 2135.
CrossRef Google scholar
[[43]]
Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A Nature, 1997, 389: 827.
CrossRef Google scholar
[[44]]
Marin A G, Gelderblom H, Lohse D, Snoeijer J H Phys. Rev. Lett., 2011, 107: 085502.
CrossRef Google scholar
[[45]]
Li Y-F, Sheng Y-J, Tsao H-K Langmuir, 2013, 29: 7802.
CrossRef Google scholar
[[46]]
Man X, Doi M Phys. Rev. Lett., 2016, 116: 066101.
CrossRef Google scholar
[[47]]
Xu J, Xia J, Hong S W, Lin Z, Qiu F, Yang Y Phys. Rev. Lett., 2006, 96: 066104.
CrossRef Google scholar
[[48]]
Srivastava S, Wahith Z A, Gang O, Colosqui C E, Bhatia S R Adv. Mater. Interfaces, 2020, 7: 1901954.
CrossRef Google scholar
[[49]]
Cui L, Zhang J, Zhang X, Huang L, Wang Z, Li Y, Gao H, Zhu S, Wang T, Yang B ACS Appl. Mater. Interfaces, 2012, 4: 2775.
CrossRef Google scholar
[[50]]
Yunker P J, Still T, Lohr M A, Yodh A G Nature, 2011, 476: 308.
CrossRef Google scholar
[[51]]
Zhang L, Maheshwari S, Chang H-C, Zhu Y Langmuir, 2008, 24: 3911.
CrossRef Google scholar
[[52]]
Kravchenko V S, Potemkin I I Macromolecules, 2020, 53: 10882.
CrossRef Google scholar
[[53]]
Basu N, Mukherjee R Soft Matter, 2018, 14: 7883.
CrossRef Google scholar
[[54]]
Li Y-F, Sheng Y-J, Tsao H-K Langmuir, 2014, 30: 7716.
CrossRef Google scholar
[[55]]
Hens A, Biswas G, De S J. Chem. Phys., 2015, 143: 094702.
CrossRef Google scholar
[[56]]
Sun S N, Urbassek H M J. Phys. Chem. B, 2011, 115: 13280.
CrossRef Google scholar
[[57]]
Chen W, Koplik J, Kretzschmar I Phys. Rev. E, 2013, 87: 052404.
CrossRef Google scholar
[[58]]
Zhang J, Leroy F, Müller-Plathe F Langmuir, 2013, 29: 9770.
CrossRef Google scholar
[[59]]
Becker S, Urbassek H M, Horsch M, Hasse H Langmuir, 2014, 30: 13606.
CrossRef Google scholar
[[60]]
Katiyar P, Singh J K J. Chem. Phys., 2019, 150: 044708.
CrossRef Google scholar
[[61]]
Evangelopoulos A E A S, Rissanou A N, Glynos E, Bitsanis I A, Anastasiadis S H, Koutsos V Macromolecules, 2018, 51: 2805.
CrossRef Google scholar
[[62]]
Zhang J, Müller-Plathe F, Leroy F Langmuir, 2015, 31: 7544.
CrossRef Google scholar
[[63]]
Derksen J J AIChE Journal, 2015, 61: 4020.
CrossRef Google scholar
[[64]]
Svoboda M, Malijevsky A, Lisal M J. Chem. Phys., 2015, 143: 104701.
CrossRef Google scholar
[[65]]
Becker S, Kohns M, Urbassek H M, Horsch M, Hasse H J. Phys. Chem. C, 2017, 121: 12669.
CrossRef Google scholar
[[66]]
Zhang J, Milzetti J, Leroy F, Müller-Plathe F J. Chem. Phys., 2017, 146: 114503.
CrossRef Google scholar
[[67]]
Gao S, Liao Q, Liu W, Liu Z Langmuir, 2018, 34: 5910.
CrossRef Google scholar
[[68]]
Bi L, Liu B, Zhu Z, Theodorakis P E, Hu H, Li Z Physics of Fluids, 2023, 35: 012015.
CrossRef Google scholar
[[69]]
Gao H, Shi R, Zhu Y, Qian H, Lu Z Chem. Res. Chinese Universities, 2022, 39: 741
[[70]]
Tang Y, McLaughlan J E, Grest G S, Cheng S Polymers, 2022, 38: 653
[[71]]
Zhang J, Pei H-W, Sun Z-Y Macromolecules, 2024, 57: 2574.
CrossRef Google scholar
[[72]]
Pei H-W, Liu H, Lu Z-Y, Zhu Y-L Phys. Rev. E, 2015, 91: 020401.
CrossRef Google scholar
[[73]]
Schnell B, Meyer H, Fond C, Wittmer J P, Baschnagel J Eur. Phys. J. E, 2011, 34: 97.
CrossRef Google scholar
[[74]]
Xu W-S, Sun Z-Y Chin. J. Polym. Sci., 2023, 41: 1329.
CrossRef Google scholar
[[75]]
Zhu Y-L, Liu H, Li Z-W, Qian H-J, Milano G, Lu Z-Y J. Comput. Chem., 2013, 34: 2197.
CrossRef Google scholar
[[76]]
Petrus P, Lisal M, Brennan J Langmuir, 2010, 26: 14680.
CrossRef Google scholar
[[77]]
Petrus P, Lisal M, Brennan J Langmuir, 2010, 26: 3695.
CrossRef Google scholar
[[78]]
Geisinger T, Müller M, Binder K J. Chem. Phys., 1999, 111: 5241.
CrossRef Google scholar
[[79]]
Dai X, Wan H-X, Zhang X, Wei W, Chen W, Zhang L, Li J, Yan L-T Chem. Res. Chinese Universities, 2023, 39: 709.
CrossRef Google scholar
[[80]]
Pei H-W, Zhang J, Sun Z-Y J. Chem. Phys., 2024, 161: 014711.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/