Synthesis and Utilization of MXene/MOF Hybrid Composite Materials

Houqiang Ji, Yuxin Liu, Guangyu Du, Tianyu Huang, Ying Zhu, Yangyang Sun, Huan Pang

Chemical Research in Chinese Universities ›› DOI: 10.1007/s40242-024-4179-1
Review

Synthesis and Utilization of MXene/MOF Hybrid Composite Materials

Author information +
History +

Abstract

Metal-organic frameworks (MOFs) are crystalline porous architectures formed by the coordination of organic ligands with metal ions or clusters. MOFs are notable for their vast surface area, abundant active sites, high porosity, and tunable properties. However, their application in energy storage and catalysis is impeded by limited conductivity and chemical stability. A promising approach to mitigating these constraints is the integration of MOFs with other functional or conductive materials. MXenes, with their distinctive layered structure, exceptional electrical conductivity, and rich surface functional groups, provide numerous advantages when combined with MOFs. This review encapsulates the synthesis methodologies of MXene/MOF composites and explores their applications across various domains, including lithium-ion batteries, supercapacitors, lithium-sulfur batteries, zinc-ion batteries, electrocatalysts, and photocatalysts.

Cite this article

Download citation ▾
Houqiang Ji, Yuxin Liu, Guangyu Du, Tianyu Huang, Ying Zhu, Yangyang Sun, Huan Pang. Synthesis and Utilization of MXene/MOF Hybrid Composite Materials. Chemical Research in Chinese Universities, https://doi.org/10.1007/s40242-024-4179-1

References

[[1]]
Pettinari C, Pettinari R, Di Nicola C, Tombesi A, Scuri S, Marchetti F Coord. Chem. Rev., 2021, 446: 214121.
CrossRef Google scholar
[[2]]
Zhai Q G, Bu X, Zhao X, Li D S, Feng P Acc. Chem. Res., 2017, 50: 407.
CrossRef Google scholar
[[3]]
Gu Y, Wu Y N, Li L, Chen W, Li F, Kitagawa S Angew. Chem. Int. Ed., 2017, 56: 15658.
CrossRef Google scholar
[[4]]
Masoomi M Y, Morsali A, Dhakshinamoorthy A, Garcia H Angew. Chem. Int. Ed., 2019, 58: 15188.
CrossRef Google scholar
[[5]]
Ikigaki K, Okada K, Tokudome Y, Toyao T, Falcaro P, Doonan C J, Takahashi M Angew. Chem. Int. Ed., 2019, 58: 6886.
CrossRef Google scholar
[[6]]
Peng Y, Xu J, Xu J, Ma J, Bai Y, Cao S, Zhang S, Pang H Adv. Colloid Interface Sci., 2022, 307: 102732.
CrossRef Google scholar
[[7]]
Khalil I E, Fonseca J, Reithofer M R, Eder T, Chin J M Coord. Chem. Rev., 2023, 481: 215043.
CrossRef Google scholar
[[8]]
Zhang Q, Jiang S, Lv T, Peng Y, Pang H Adv. Mater., 2023, 35: e2305532.
CrossRef Google scholar
[[9]]
Qian Y, Zhang F, Pang H Adv. Funct. Mater., 2021, 31: 2104231.
CrossRef Google scholar
[[10]]
Shen Z, Li W, Tang W, Jiang X, Qi K, Liu H, Xu W, Xu W, Zang S, Zhen K, Li H, He Q, Tu M, Cheng J, Fan Z, Fu Y Adv. Funct. Mater., 2024, 34: 2401631.
CrossRef Google scholar
[[11]]
Guo G-C, Zhao J-P, Guo S, Shi W-X, Liu F-C, Lu T-B, Zhang Z-M Angew. Chem. Int. Ed., 2024, 63: e202402374.
CrossRef Google scholar
[[12]]
Senkovska I, Bon V, Abylgazina L, Mendt M, Berger J, Kieslich G, Petkov P, Luiz Fiorio J, Joswig J O, Heine T, Schaper L, Bachetzky C, Schmid R, Fischer R A, Pöppl A, Brunner E, Kaskel S Angew. Chem. Int. Ed., 2023, 62: e202218076.
CrossRef Google scholar
[[13]]
Wang K, Li Y, Xie L H, Li X, Li J R Chem. Soc. Rev., 2022, 51: 6417.
CrossRef Google scholar
[[14]]
Olorunyomi J F, Dyett B P, Murdoch B J, Ahmed A J, Rosengarten G, Caruso R A, Doherty C M, Mulet X Adv. Funct. Mater., 2024 2403644
[[15]]
Li K, Yang J, Gu J Acc. Chem. Res., 2022, 55: 2235.
CrossRef Google scholar
[[16]]
Daglar H, Gulbalkan H C, Avci G, Aksu G O, Altundal O F, Altintas C, Erucar I, Keskin S Angew. Chem. Int. Ed., 2021, 60: 7828.
CrossRef Google scholar
[[17]]
Shrivastav V, Sundriyal S, Goel P, Kaur H, Tuteja S K, Vikrant K, Kim K-H, Tiwari U K, Deep A Coord. Chem. Rev., 2019, 393: 48.
CrossRef Google scholar
[[18]]
Kitao T, Zhang Y, Kitagawa S, Wang B, Uemura T Chem. Soc. Rev., 2017, 46: 3108.
CrossRef Google scholar
[[19]]
Lin Z, Han Z, O’Connell G E P, Wan T, Zhang D, Ma Z, Chu D, Lu X Adv. Mater., 2024, 36: e2312797.
CrossRef Google scholar
[[20]]
Huang G, Yang Q, Xu Q, Yu S H, Jiang H L Angew. Chem. Int. Ed. Engl., 2016, 55: 7379.
CrossRef Google scholar
[[21]]
Shelonchik O, Lemcoff N, Shimoni R, Biswas A, Yehezkel E, Yesodi D, Hod I, Weizmann Y Nat. Commun., 2024, 15: 1154.
CrossRef Google scholar
[[22]]
Troyano J, Çamur C, Garzón-Tovar L, Carné-Sánchez A, Imaz I, Maspoch D Acc. Chem. Res., 2020, 53: 1206.
CrossRef Google scholar
[[23]]
Roh H, Kim D H, Cho Y, Jo Y M, del Alamo J A, Kulik H J, Dincă M, Gumyusenge A Adv. Mater., 2024, 36: 2312382.
CrossRef Google scholar
[[24]]
Wei Y, Zhang P, Soomro R A, Zhu Q, Xu B Adv. Mater., 2021, 33: e2103148.
CrossRef Google scholar
[[25]]
Li X, Huang Z, Shuck C E, Liang G, Gogotsi Y, Zhi C Nat. Rev. Chem., 2022, 6: 389.
CrossRef Google scholar
[[26]]
Xue H, Huang P H, Lai L L, Su Y, Strömberg A, Cao G, Fan Y, Khartsev S, Göthelid M, Sun Y T, Weissenrieder J, Gylfason K B, Niklaus F, Li J Carbon Energy, 2024, 6: e442.
CrossRef Google scholar
[[27]]
Zhao X, Radovic M, Green M J Chem, 2020, 6: 544.
CrossRef Google scholar
[[28]]
Natu V, Pai R, Sokol M, Carey M, Kalra V, Barsoum M W Chem, 2020, 6: 616.
CrossRef Google scholar
[[29]]
Wang Y, Guo T, Alhajji E, Tian Z, Shi Z, Zhang Y Z, Alshareef H N Adv. Energy Mater., 2022, 13: 2202860.
CrossRef Google scholar
[[30]]
Wang Y, Guo T, Tian Z, Bibi K, Zhang Y Z, Alshareef H N Adv. Mater., 2022, 34: e2108560.
CrossRef Google scholar
[[31]]
Zhang P, Wang X, Zhang Y, Wei Y, Shen N, Chen S, Xu B Adv. Funct. Mater., 2024, 34: 2402307.
CrossRef Google scholar
[[32]]
Wang X, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, Okubo M, Yamada A Nat. Commun., 2015, 6: 6544.
CrossRef Google scholar
[[33]]
Yin L, Li Y, Yao X, Wang Y, Jia L, Liu Q, Li J, Li Y, He D Nano-Micro Letters, 2021, 13: 78.
CrossRef Google scholar
[[34]]
Etman A S, Halim J, Rosen J Nano Energy, 2021, 88: 106271.
CrossRef Google scholar
[[35]]
Krecker M C, Bukharina D, Hatter C B, Gogotsi Y, Tsukruk V V Adv. Funct. Mater., 2020, 30: 2004554.
CrossRef Google scholar
[[36]]
He F, Zhu B, Cheng B, Yu J, Ho W, Macyk W Appl. Catal. B, 2020, 272: 119006.
CrossRef Google scholar
[[37]]
Li J-Y, Li Y-H, Zhang F, Tang Z-R, Xu Y-J Appl. Catal. B, 2020, 269: 118783.
CrossRef Google scholar
[[38]]
Lei D, Liu N, Su T, Zhang Q, Wang L, Ren Z, Gao Y Adv. Mater., 2022, 34: 2110608.
CrossRef Google scholar
[[39]]
Bi W, Gao G, Li C, Wu G, Cao G Prog. Mater Sci., 2024, 142: 101227.
CrossRef Google scholar
[[40]]
Liang X, Rangom Y, Kwok C Y, Pang Q, Nazar L F Adv. Mater., 2016, 29: 1603040.
CrossRef Google scholar
[[41]]
Xu T, Wang Y, Xue Y, Li J, Wang Y Chem. Eng. J., 2023, 470: 144247.
CrossRef Google scholar
[[42]]
Venkateswarlu S, Vallem S, Umer M, Jyothi N V V, Babu A, Govindaraju S, Son Y, Kim M, Yoon M J. Energy Chem., 2023, 86: 409.
CrossRef Google scholar
[[43]]
Ghani A A, Devarayapalli K C, Kim B, Lim Y, Kim G, Jang J, Lee D S Carbohydr. Polym., 2023, 318: 121098.
CrossRef Google scholar
[[44]]
Yu S, Cheng C, Li K, Wang J, Wang Z, Zhou H, Wang W, Zhang Y, Quan Y Chem. Eng. J., 2023, 465: 143039.
CrossRef Google scholar
[[45]]
Mathew A E, Jose S, Babu A M, Varghese A Materials Today Chemistry, 2024, 36: 101927.
CrossRef Google scholar
[[46]]
Saini H, Srinivasan N, Sedajova V, Majumder M, Dubal D P, Otyepka M, Zboril R, Kurra N, Fischer R A, Jayaramulu K ACS Nano, 2021, 15: 18742.
CrossRef Google scholar
[[47]]
Bibi S, Shah S S A, Nazir M A, Helal M H, El-Bahy S M, El-Bahy Z M, Ullah S, Wattoo M A, Rehman A U Advanced Sustainable Systems, 2024, 8: 202400011.
CrossRef Google scholar
[[48]]
Ma X, Kang J, Wu Y, Pang C, Li S, Li J, Xiong Y, Luo J, Wang M, Xu Z Chem. Eng. J., 2023, 469: 143888.
CrossRef Google scholar
[[49]]
Nazari M, Morsali A J. Mater. Chem. A, 2024, 12: 4826.
CrossRef Google scholar
[[50]]
Hu M-L, Masoomi M Y, Morsali A Coord. Chem. Rev., 2019, 387: 415.
CrossRef Google scholar
[[51]]
Jin S ACS Energy Letters, 2019, 4: 1443.
CrossRef Google scholar
[[52]]
Qian Z, Zhang R, Xiao Y, Huang H, Sun Y, Chen Y, Ma T, Sun X Adv. Energy Mater., 2023, 13: 2300086.
CrossRef Google scholar
[[53]]
Shi X, Lee G A, Liu S, Kim D, Alahmed A, Jamal A, Wang L, Park A-H A Mater. Today, 2023, 65: 207.
CrossRef Google scholar
[[54]]
McHugh L N, McPherson M J, McCormick L J, Morris S A, Wheatley P S, Teat S J, McKay D, Dawson D M, Sansome C E F, Ashbrook S E, Stone C A, Smith M W, Morris R E Nat. Chem., 2018, 10: 1096.
CrossRef Google scholar
[[55]]
Dai F, Wang X, Zheng S, Sun J, Huang Z, Xu B, Fan L, Wang R, Sun D, Wu Z-S Chem. Eng. J., 2021, 413: 127520.
CrossRef Google scholar
[[56]]
Sikma R E, Katyal N, Lee S K, Fryer J W, Romero C G, Emslie S K, Taylor E L, Lynch V M, Chang J S, Henkelman G, Humphrey S M J. Am. Chem. Soc., 2021, 143: 13710.
CrossRef Google scholar
[[57]]
Lu Z, Liu J, Zhang X, Liao Y, Wang R, Zhang K, Lyu J, Farha O K, Hupp J T J. Am. Chem. Soc., 2020, 142: 21110.
CrossRef Google scholar
[[58]]
Akuzum B, Maleski K, Anasori B, Lelyukh P, Alvarez N J, Kumbur E C, Gogotsi Y ACS Nano, 2018, 12: 2685.
CrossRef Google scholar
[[59]]
Wang H, Yao Z, Acauan L, Kong J, Wardle B L Matter, 2021, 4: 1447.
CrossRef Google scholar
[[60]]
Soomro R A, Zhang P, Fan B, Wei Y, Xu B Nanomicro Lett., 2023, 15: 108.
CrossRef Google scholar
[[62]]
Hou P, Tian Y, Xie Y, Du F, Chen G, Vojvodic A, Wu J, Meng X Angew. Chem. Int. Ed. Engl., 2023, 62: e202304205.
CrossRef Google scholar
[[63]]
Cao F, Zhang Y, Wang H, Khan K, Tareen A K, Qian W, Zhang H, Agren H Adv. Mater., 2022, 34: e2107554.
CrossRef Google scholar
[[64]]
Eom W, Shin H, Jeong W, Ambade R B, Lee H, Han T H Mater Horiz, 2023, 10: 4892.
CrossRef Google scholar
[[65]]
Han Y, Zong P-A, Huang M, Yang Z, Feng Y, Pan W, Zhang P, Wan C Journal of Advanced Ceramics, 2022, 11: 1445.
CrossRef Google scholar
[[66]]
Lou S, Jia X, Wang Y, Zhou S Appl. Catal. B, 2015, 176/177: 586.
CrossRef Google scholar
[[67]]
Wang Y, Dong Y, Liu Q, Guo X, Zhang M, Li Y Nano Energy, 2020, 78: 105150.
CrossRef Google scholar
[[68]]
Li G, Si Z, Cai D, Wang Z, Qin P, Tan T Sep. Purif. Technol., 2020, 236: 116263.
CrossRef Google scholar
[[69]]
Gao Y, Lu J, Xia J, Yu G ACS Appl. Mater. Interfaces, 2020, 12: 12706.
CrossRef Google scholar
[[70]]
Yue L, Chen L, Wang X, Lu D, Zhou W, Shen D, Yang Q, Xiao S, Li Y Chem. Eng. J., 2023, 451: 138687.
CrossRef Google scholar
[[71]]
Zhang X, Yang S, Lu W, Lei D, Tian Y, Guo M, Mi P, Qu N, Zhao Y J. Colloid Interface Sci., 2021, 592: 95.
CrossRef Google scholar
[[72]]
Cao B, Liu H, Zhang X, Zhang P, Zhu Q, Du H, Wang L, Zhang R, Xu B Nanomicro Lett., 2021, 13: 202.
CrossRef Google scholar
[[151]]
Fang G, Zhou J, Pan A, Liang S ACS Energy Letters, 2018, 3: 2480.
CrossRef Google scholar
[[152]]
Loh J R, Xue J, Lee W S V Small Methods, 2023, 7: 2300101.
CrossRef Google scholar
[[153]]
Zhang N, Chen X, Yu M, Niu Z, Cheng F, Chen J Chem. Soc. Rev., 2020, 49: 4203.
CrossRef Google scholar
[[154]]
Ye Z, Cao Z, Lam Chee M O, Dong P, Ajayan P M, Shen J, Ye M Energy Storage Materials, 2020, 32: 290.
CrossRef Google scholar
[[155]]
Zhou Z, Han M, Sun Y, Cui Y, El-khodary S A, Ng D H L, Lian J, Ma J Adv. Funct. Mater., 2023, 34: 2308834.
CrossRef Google scholar
[[156]]
Lu H, Hu J, Wei X, Zhang K, Xiao X, Zhao J, Hu Q, Yu J, Zhou G, Xu B Nat. Commun., 2023, 14: 4435.
CrossRef Google scholar
[[157]]
Lee Y H, Jeoun Y, Kim J H, Shim J, Ahn K S, Yu S H, Sung Y E Adv. Funct. Mater., 2023, 34: 2310884.
CrossRef Google scholar
[[158]]
Hu P, Zou Z, Sun X, Wang D, Ma J, Kong Q, Xiao D, Gu L, Zhou X, Zhao J, Dong S, He B, Avdeev M, Shi S, Cui G, Chen L Adv. Mater., 2020, 32: e1907526.
CrossRef Google scholar
[[159]]
Wang Y, Song J, Wong W Y Angew. Chem. Int. Ed. Engl., 2023, 62: e202218343.
CrossRef Google scholar
[[160]]
Xu L, Meng T, Zheng X, Li T, Brozena A H, Mao Y, Zhang Q, Clifford B C, Rao J, Hu L Adv. Funct. Mater., 2023, 33: 2302098.
CrossRef Google scholar
[[161]]
Zong Y, He H, Wang Y, Wu M, Ren X, Bai Z, Wang N, Ning X, Dou S X Adv. Energy Mater., 2023, 13: 2300403.
CrossRef Google scholar
[[162]]
Blanc L E, Kundu D, Nazar L F Joule, 2020, 4: 771.
CrossRef Google scholar
[[163]]
Ma L, Chen S, Li N, Liu Z, Tang Z, Zapien J A, Chen S, Fan J, Zhi C Adv. Mater., 2020, 32: e1908121.
CrossRef Google scholar
[[164]]
Lu H, Hu J, Zhang K, Zhao J, Deng S, Li Y, Xu B, Pang H Adv. Mater., 2024, 36: e2309753.
CrossRef Google scholar
[[165]]
Zhang A, Zhao R, Wang Y, Yang J, Wu C, Bai Y Energy & Environmental Science, 2023, 16: 3240.
CrossRef Google scholar
[[166]]
Zhu K, Wu T, Huang K ACS Nano, 2019, 13: 14447.
CrossRef Google scholar
[[167]]
Li D, Tang Y, Liang S, Lu B, Chen G, Zhou J Energy & Environmental Science, 2023, 16: 3381.
CrossRef Google scholar
[[168]]
Zhu K, Wu T, Huang K Energy Storage Materials, 2021, 38: 473.
CrossRef Google scholar
[[169]]
Liu W, Zong H, Li M, Zeng Z, Gong S, Yu K, Zhu Z ACS Appl. Mater. Interfaces, 2023, 15: 13554.
CrossRef Google scholar
[[170]]
Jiang Y, Liu J Energy & Environmental Materials, 2019, 2: 30.
CrossRef Google scholar
[[171]]
Zhang L, Shi D, Liu T, Jaroniec M, Yu J Mater. Today, 2019, 25: 35.
CrossRef Google scholar
[[172]]
Zhong M, Zhang M, Li X Carbon Energy, 2022, 4: 950.
CrossRef Google scholar
[[173]]
Yu D, Qian Q, Wei L, Jiang W, Goh K, Wei J, Zhang J, Chen Y Chem. Soc. Rev., 2015, 44: 647.
CrossRef Google scholar
[[174]]
Kiruthika S, Sneha N, Gupta R J. Mater. Chem. A, 2023, 11: 4907.
CrossRef Google scholar
[[175]]
Liu C, Feng W, Bai Y, Pang H Inorganic Chemistry Frontiers, 2022, 9: 5463.
CrossRef Google scholar
[[176]]
Wang J, Gong J, Zhang H, Lv L, Liu Y, Dai Y J. Alloys Compd., 2021, 870: 159466.
CrossRef Google scholar
[[177]]
Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W Chem. Soc. Rev., 2017, 46: 6816.
CrossRef Google scholar
[[178]]
Cai Y, Chen X, Xu Y, Zhang Y, Liu H, Zhang H, Tang J Carbon Energy, 2024, 6: e501.
CrossRef Google scholar
[[179]]
Niu L, Wu T, Chen M, Yang L, Yang J, Wang Z, Kornyshev A A, Jiang H, Bi S, Feng G Adv. Mater., 2022, 34: 2200999.
CrossRef Google scholar
[[180]]
Cheng H, Li J, Meng T, Shu D Small, 2023, 20: 2308804.
CrossRef Google scholar
[[181]]
Xia H, Zhang J, Yang Z, Guo S, Guo S, Xu Q Nano-Micro Letters, 2017, 9: 43.
CrossRef Google scholar
[[182]]
Qu C, Jiao Y, Zhao B, Chen D, Zou R, Walton K S, Liu M Nano Energy, 2016, 26: 66.
CrossRef Google scholar
[[183]]
Sheberla D, Bachman J C, Elias J S, Sun C J, Shao-Horn Y, Dinca M Nat. Mater., 2017, 16: 220.
CrossRef Google scholar
[[184]]
Jayaramulu K, Horn M, Schneemann A, Saini H, Bakandritsos A, Ranc V, Petr M, Stavila V, Narayana C, Scheibe B, Kment S, Otyepka M, Motta N, Dubal D, Zboril R, Fischer R A Adv. Mater., 2021, 33: e2004560.
CrossRef Google scholar
[[185]]
Ji Y, You Y, Xu G, Yang X, Liu Y Chem. Eng. J., 2024, 483: 149365.
CrossRef Google scholar
[[186]]
Xu Q, Chen J, Loh J R, Zhong H, Zhang K, Xue J, Lee W S V Adv. Energy Mater., 2023, 14: 2302536.
CrossRef Google scholar
[[187]]
Amiri A, Bruno A, Polycarpou A A Carbon Energy, 2023, 5: e320.
CrossRef Google scholar
[[188]]
Liu T, Yan R, Huang H, Pan L, Cao X, deMello A, Niederberger M Adv. Funct. Mater., 2020, 30: 2004410.
CrossRef Google scholar
[[189]]
Dubal D P, Chodankar N R, Kim D-H, Gomez-Romero P Chem. Soc. Rev., 2018, 47: 2065.
CrossRef Google scholar
[[190]]
Xu T, Wang Y, Liu K, Zhao Q, Liang Q, Zhang M, Si C Advanced Composites and Hybrid Materials, 2023, 6: 108.
CrossRef Google scholar
[[191]]
Zhao W, Jiang M, Wang W, Liu S, Huang W, Zhao Q Adv. Funct. Mater., 2020, 31: 2009136.
CrossRef Google scholar
[[192]]
Weng Z, Su Y, Wang D W, Li F, Du J, Cheng H M Adv. Energy Mater., 2011, 1: 917.
CrossRef Google scholar
[[193]]
Kshetri T, Khumujam D D, Singh T I, Lee Y S, Kim N H, Lee J H Chem. Eng. J., 2022, 437: 135338.
CrossRef Google scholar
[[194]]
Wang X, Salari M, Jiang D-E, Chapman Varela J, Anasori B, Wesolowski D J, Dai S, Grinstaff M W, Gogotsi Y Nature Reviews Materials, 2020, 5: 787.
CrossRef Google scholar
[[195]]
Lu C, Li A, Zhai T, Niu C, Duan H, Guo L, Zhou W Energy Storage Materials, 2020, 26: 472.
CrossRef Google scholar
[[196]]
Yang X, Tian Y, Li S, Wu Y-P, Zhang Q, Li D-S, Zhang S J. Mater. Chem. A, 2022, 10: 12225.
CrossRef Google scholar
[[197]]
Wang J, Zhao C-X, Liu J-N, Song Y-W, Huang J-Q, Li B-Q Nano Energy, 2022, 104: 107927.
CrossRef Google scholar
[[198]]
Pei Z, Tan H, Gu J, Lu L, Zeng X, Zhang T, Wang C, Ding L, Cullen P J, Chen Z, Zhao S Nat. Commun., 2023, 14: 818.
CrossRef Google scholar
[[199]]
Zhang T, Zhang B, Peng Q, Zhou J, Sun Z J. Mater. Chem. A, 2021, 9: 433.
CrossRef Google scholar
[[200]]
Lu L, Zheng Y, Yang R, Kakimov A, Li X Materials Today Chemistry, 2021, 21: 100488.
CrossRef Google scholar
[[201]]
Li Y-W, Zhang W-J, Li J, Ma H-Y, Du H-M, Li D-C, Wang S-N, Zhao J-S, Dou J-M, Xu L ACS Appl. Mater. Interfaces, 2020, 12: 44710.
CrossRef Google scholar
[[202]]
Jiang B, Guo Y, Sun F, Wang S, Kang Y, Xu X, Zhao J, You J, Eguchi M, Yamauchi Y, Li H ACS Nano, 2023, 17: 13017.
CrossRef Google scholar
[[203]]
Bae G, Han S, Oh H S, Choi C H Angew. Chem. Int. Ed., 2023, 62: e200219227.
CrossRef Google scholar
[[204]]
Zhang J, Feng X Joule, 2018, 2: 1396.
CrossRef Google scholar
[[205]]
Zhu C, Fu S, Shi Q, Du D, Lin Y Angew. Chem. Int. Ed., 2017, 56: 13944.
CrossRef Google scholar
[[206]]
Li H, Yan G, Zhao H, Howlett P C, Wang X, Fang J Adv. Mater., 2024, 36: e2311272.
CrossRef Google scholar
[[207]]
Zhuang X, Zhang S, Tang Y, Yu F, Li Z, Pang H Coord. Chem. Rev., 2023, 490: 215208.
CrossRef Google scholar
[[208]]
Zou H, He B, Kuang P, Yu J, Fan K ACS Appl. Mater. Interfaces, 2018, 10: 22311.
CrossRef Google scholar
[[209]]
Xu C, Yang X, Li S, Li K, Xi B, Han Q-W, Wu Y-P, Wu X-Q, Chi R-A, Li D-S Inorganic Chemistry Frontiers, 2023, 10: 85.
CrossRef Google scholar
[[210]]
Xu C, Yang X, Feng K, Zhang M, Yang L, Yin S Int. J. Hydrogen Energy, 2023, 48: 17553.
CrossRef Google scholar
[[211]]
Hao L P, Hanan A, Walvekar R, Khalid M, Bibi F, Wong W Y, Prakash C Catalysts, 2023, 13: 802.
CrossRef Google scholar
[[212]]
Wang W-T, Batool N, Zhang T-H, Liu J, Han X-F, Tian J-H, Yang R J. Mater. Chem. A, 2021, 9: 3952.
CrossRef Google scholar
[[213]]
Hao M, Li T, Lin L, Zhang X, Huo C, Zhang X, Liu X, Zhu Y, Zhang W Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 688: 133626.
CrossRef Google scholar
[[214]]
Chen J, Yuan X, Lyu F, Zhong Q, Hu H, Pan Q, Zhang Q J. Mater. Chem. A, 2019, 7: 1281.
CrossRef Google scholar
[[215]]
Xu C, Ravi Anusuyadevi P, Aymonier C, Luque R, Marre S Chem. Soc. Rev., 2019, 48: 3868.
CrossRef Google scholar
[[216]]
Buzzetti L, Crisenza G E M, Melchiorre P Angew. Chem. Int. Ed., 2019, 58: 3730.
CrossRef Google scholar
[[217]]
Hu C, Tu S, Tian N, Ma T, Zhang Y, Huang H Angew. Chem. Int. Ed., 2021, 60: 16309.
CrossRef Google scholar
[[218]]
Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi A A Adv. Mater., 2017, 29: 1601694.
CrossRef Google scholar
[[219]]
Li X, Yu J, Jaroniec M Chem. Soc. Rev., 2016, 45: 2603.
CrossRef Google scholar
[[220]]
Sun X, Huang H, Zhao Q, Ma T, Wang L Adv. Funct. Mater., 2020, 30: 1910005.
CrossRef Google scholar
[[221]]
Zhang L, Zhang J, Yu H, Yu J Adv. Mater., 2022, 34: 2107668.
CrossRef Google scholar
[[222]]
Lehnert N, Dong H T, Harland J B, Hunt A P, White C J Nature Reviews Chemistry, 2018, 2: 278.
CrossRef Google scholar
[[223]]
Wang C, Wang S, Ping Y, Zhao Z, Guo D, Wang D, Bu X Applied Catalysis B: Environment and Energy, 2024, 347: 123781.
CrossRef Google scholar
[[224]]
Huang H, Wang X-S, Philo D, Ichihara F, Song H, Li Y, Li D, Qiu T, Wang S, Ye J Appl. Catal. B, 2020, 267: 118686.
CrossRef Google scholar
[[225]]
Huang T, Yang H, Xu W, Sun Y, Pang H Chem Catalysis, 2024, 4: 100929.
CrossRef Google scholar
[[226]]
Sun Y, Ji H, Sun Y, Zhang G, Zhou H, Cao S, Liu S, Zhang L, Li W, Zhu X, Pang H Angew Chem Int Ed Engl, 2024, 63: e202316973.
CrossRef Google scholar
[[227]]
Ba K, Pu D, Yang X, Ye T, Chen J, Wang X, Xiao T, Duan T, Sun Y, Ge B, Zhang P, Liang Z, Sun Z Appl. Catal. B, 2022, 317: 121755.
CrossRef Google scholar
[[228]]
Cheng L, Tang Y, Xie M, Sun Y, Liu H J. Alloys Compd., 2021, 864: 158913.
CrossRef Google scholar
[[229]]
Zhu Y, Ji H, Huang T, Sun Y, Pang H Advanced Sustainable Systems, 2024 2400225
[[230]]
Qin J, Liu B, Lam K-H, Song S, Li X, Hu X ACS Sustain. Chem. Eng., 2020, 8: 17791.
CrossRef Google scholar
[[231]]
Wang H, Zhao R, Qin J, Hu H, Fan X, Cao X, Wang D ACS Appl. Mater. Interfaces, 2019, 11: 44249.
CrossRef Google scholar
[[232]]
Xue Z, Yan M, Zhang Y, Xu J, Gao X, Wu Y Appl. Catal. B, 2023, 325: 122303.
CrossRef Google scholar
[[233]]
Chiarello G L, Dozzi M V, Selli E J. Energy Chem, 2017, 26: 250.
CrossRef Google scholar
[[234]]
Ganguly P, Harb M, Cao Z, Cavallo L, Breen A, Dervin S, Dionysiou D D, Pillai S C ACS Energy Letters, 2019, 4: 1687.
CrossRef Google scholar
[[235]]
Du H, Liu Y-N, Shen C-C, Xu A-W Chinese J. Catal., 2017, 38: 1295.
CrossRef Google scholar
[[236]]
Hanan A, Lakhan M N, Bibi F, Khan A, Soomro I A, Hussain A, Aftab U Chem. Eng. J., 2024, 482: 148776.
CrossRef Google scholar
[[237]]
Zhang Y, Zhou K, Yuan C, Lv H, Yin H, Fei Q, Xiao D, Zhang Y, Lau W J. Colloid Interface Sci., 2024, 653: 482.
CrossRef Google scholar
[[238]]
Liu S, Jiang X, Waterhouse G I N, Zhang Z-M, Yu L-M Sep. Purif. Technol., 2022, 294: 121094.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/