Chemical Activation of S/Li2S in Li-S Batteries by a Bidirectional Organic Redox Mediator

Chengqiu Li, Chaoyong Zhou, Shilin Mei, Changjiang Yao

Chemical Research in Chinese Universities ›› , Vol. 40 ›› Issue (5) : 927-934. DOI: 10.1007/s40242-024-4177-3
Article

Chemical Activation of S/Li2S in Li-S Batteries by a Bidirectional Organic Redox Mediator

Author information +
History +

Abstract

The energy density and lifespan of prototype Li-S batteries under high sulfur loading and lean electrolyte have been mainly restricted by the incomplete interconversion between insulating S8 and Li2S. The introduction of an electrocatalyst has been preserved as an effective way to breakthrough the bottleneck of the interconversion rate. Herein, we demonstrate a novel bidirectional redox mediator, insoluble dithiobisphthalimide (DTPI), as the electrocatalyst for both S8 reduction and Li2S oxidation. Due to the dual-functional role of both electron/Li+ donor and acceptor, DTPI can efficiently accelerate the redox reactions during charge/discharge and significantly alleviate the incomplete conversion of sulfur species. Consequently, the Li-S batteries with DTPI deliver superior specific capacity and cycling stability in comparison with those without DTPI. Especially, the redox mediator is scalable for synthesis and the DTPI-based 5 A·h pouch cell delivers a specific discharge capacity of around 870 mA·h·g−1 at 0.1 C (1 C=1675 mA/g) without capacity fading over 80 cycles. The bidirectional catalysis mechanism has been studied through theoretical calculation and ex-situ characterization of the cathode materials. This work approves the effectiveness of bidirectional organic redox mediator in the construction of practical Li-S batteries.

Cite this article

Download citation ▾
Chengqiu Li, Chaoyong Zhou, Shilin Mei, Changjiang Yao. Chemical Activation of S/Li2S in Li-S Batteries by a Bidirectional Organic Redox Mediator. Chemical Research in Chinese Universities, , 40(5): 927‒934 https://doi.org/10.1007/s40242-024-4177-3

References

[[1]]
Ji X, Lee K T, Nazar L F Nat. Mater., 2009, 8: 500.
CrossRef Google scholar
[[2]]
Pang Q, Liang X, Kwok C Y, Nazar L F Nat. Energy, 2016, 1: 16132.
CrossRef Google scholar
[[3]]
Wang N, Zhang X, Ju Z, Yu X, Wang Y, Du Y, Bai Z, Dou S, Yu G Nat. Commun., 2021, 12: 4519.
CrossRef Google scholar
[[4]]
Chen P, Wu Z, Guo T, Zhou Y, Liu M, Xia X, Sun J, Lu L, Ouyang X, Wang X, Fu Y, Zhu J Adv. Mater., 2021, 33: 2007549.
CrossRef Google scholar
[[5]]
Paolella A Interfacial Reactions in Interfaces in Lithium-Ion Batteries, 2024 Cham, Switzerland Springer Nature
[[6]]
Sun D, Sun Z, Yang D, Jiang X, Tang J, Wang X EcoEnergy, 2023, 1: 375.
CrossRef Google scholar
[[7]]
Lv Q, Sun Y, Li B, Li C, Zhang Q, Wang L Adv. Energy Mater., 2024, 14: 2403223.
CrossRef Google scholar
[[8]]
Zhang H, Zhou Z, Yin Y, Xu H, Wang Y, Yang K, Zhang Z, Wang J, He X EcoEnergy, 2023, 1: 217.
CrossRef Google scholar
[[9]]
Xu Z-L, Lin S, Onofrio N, Zhou L, Shi F, Lu W, Kang K, Zhang Q, Lau S P Nat. Commun., 2018, 9: 4164.
CrossRef Google scholar
[[10]]
Yu X, Manthiram A Acc. Chem. Res., 2017, 50: 2653.
CrossRef Google scholar
[[11]]
Seh Z W, Sun Y, Zhang Q, Cui Y Chem. Soc. Rev., 2016, 45: 5605.
CrossRef Google scholar
[[12]]
Yang D, Liang Z, Tang P, Zhang C, Tang M, Li Q, Biendicho J J, Li J, Heggen M, Dunin-Borkowski R E, Xu M, Llorca J, Arbiol J, Morante J R, Chou S L A, Cabot A Adv. Mater., 2022, 34: 2108835.
CrossRef Google scholar
[[13]]
Liu W, Gong L, Liu Z, Jin Y, Pan H, Yang X, Yu B, Li N, Qi D, Wang K, Wang H, Jiang J J. Am. Chem. Soc., 2022, 144: 17209.
CrossRef Google scholar
[[14]]
Duan H, Li K, Xie M, Chen J-M, Zhou H-G, Wu X, Ning G-H, Cooper A I, Li D J. Am. Chem. Soc., 2021, 143: 19446.
CrossRef Google scholar
[[15]]
Je S H, Kim H J, Kim J, Choi J W, Coskun A Adv. Funct. Mater., 2017, 27: 1703947.
CrossRef Google scholar
[[16]]
Yan R, Mishra B, Traxler M, Roeser J, Chaoui N, Kumbhakar B, Schmidt J, Li S, Thomas A, Pachfule P Angew. Chem. Int. Ed., 2023, 62: e202302276.
CrossRef Google scholar
[[17]]
Hu X, Jian J, Fang Z, Zhong L, Yuan Z, Yang M, Ren S, Zhang Q, Chen X, Yu D Energy Storage Mater., 2019, 22: 40.
CrossRef Google scholar
[[18]]
Li G, Yang L, Jiang X, Zhang T, Lin H, Yao Q, Lee J Y J. Power Sources, 2018, 378: 418.
CrossRef Google scholar
[[19]]
Song Y, Zhao W, Kong L, Zhang L, Zhu X, Shao Y, Ding F, Zhang Q, Sun J, Liu Z Energy Environ. Sci., 2018, 11: 2620.
CrossRef Google scholar
[[20]]
Xie J, Peng H J, Song Y W, Li B Q, Xiao Y, Zhao M, Yuan H, Huang J Q, Zhang Q Angew. Chem.Int. Ed., 2020, 132: 17823.
CrossRef Google scholar
[[21]]
Meini S, Elazari R, Rosenman R, Garsuch A, Aurbach D J. Phys. Chem. Lett., 2018, 5: 915.
CrossRef Google scholar
[[22]]
Xie J, Peng H, Song Y, Li B, Xiao Y, Zhao M, Yuan H, Huang J Q, Zhang Q Angew. Chem. Int. Ed., 2020, 59: 17670.
CrossRef Google scholar
[[23]]
Zhu X, Bian T, Song X, Zheng M, Shen Z, Liu Z, Guo Z, He J, Zeng Z, Bai F, Wen L, Zhang S, Lu J, Zhao Y Angew. Chem. Int. Ed., 2024, 63: e202315087.
CrossRef Google scholar
[[24]]
Tsao Y, Lee M, Miller E C, Gao G, Park J, Chen S, Katsumata T, Tran H, Wang L, Toney M F, Cui Y, Bao Z Joule, 2019, 3: 872.
CrossRef Google scholar
[[25]]
Zhao X., Zhang Y., Liu W., Zheng Z., Fu Z., Chen C., Hu C., Adv. Funct. Mater, 2023, 2313107.
[[26]]
Zhao M, Li X-Y, Chen X, Li B-Q, Kaskel S, Zhang Q, Huang J-Q eScience, 2021, 1: 44.
CrossRef Google scholar
[[27]]
Kong L, Chen J-X, Peng H-J, Huang J-Q, Zhu W, Jin Q, Li B-Q, Zhang X-T, Zhang Q Energy Environ. Sci., 2019, 12: 2976.
CrossRef Google scholar
[[28]]
Song Y, Sun Z, Fan Z, Cai W, Shao Y, Sheng G, Wang M, Song L, Liu Z, Zhang Q, Sun J Nano Energy, 2020, 70: 104555.
CrossRef Google scholar
[[29]]
Li A, Xu Y, Shi J, Yuan B, Cheng F, Zhang W Chem. Eng. J., 2024, 481: 148503.
CrossRef Google scholar
[[30]]
Talapaneni S N, Hwang T H, Je S H, Buyukcakir O, Choi J W, Coskun A Angew. Chem. Int. Ed., 2016, 55: 3106.
CrossRef Google scholar
[[31]]
Yang X, Gong L, Liu X, Zhang P, Li B, Qi D, Wang K, He F, Jiang J Angew. Chem. Int. Ed., 2022, 61: e202207043.
CrossRef Google scholar
[[32]]
Takeda T, Taniki R, Masuda A, Honma I, Akutagawa T J. Power Sources, 2016, 328: 228e234.
CrossRef Google scholar
[[33]]
Fu N., Liu Y., Kang K., Tang X., Zhang S., Yang Z., Wang Y., Jin P., Niu Y., Yang B., Angew. Chem. Int. Ed., https://doi.org/10.1002/anie.202412334.
[[34]]
Raj M R, Mangalaraja R V, Contreras D, Varaprasad K, Venkatashamy M R, Adams S ACS Appl. Energy Mater., 2020, 3: 240.
CrossRef Google scholar
[[35]]
Son Y, Lee J-S, Son Y, Jang J-H, Cho J Adv. Energy Mater., 2015, 5: 1500110.
CrossRef Google scholar
[[36]]
Jin W, Zhang X, Liu M, Zhao Y, Zhang P Energy Storage Mater, 2024, 67: 103223.
CrossRef Google scholar
[[37]]
Meini S, Elazari R, Rosenman A, Garsuch A, Aurbach D J. Phys. Chem. Lett., 2014, 5: 915.
CrossRef Google scholar
[[38]]
Yang D, Liang Z, Tang P, Zhang C, Tang M, Li Q, Biendicho J J, Li J, Heggen M, Dunin-Borkowski R E, Xu M, Llorca J, Arbiol J, Morante J R, Chou S-L, Cabot A Adv. Mater., 2022, 34: 2108835.
CrossRef Google scholar
[[39]]
Liu W, Wang K, Zhan X, Liu Z, Yang X, Jin X, Yu B, Gong L, Wang H, Qi D, Yuan D, Jian J J. Am. Chem. Soc., 2023, 145: 8141.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/