Non-invasive Healthcare Analytical Platform Based on Organic Electrochemical Transistors

Xingyu Hu, Ning Mao, Xinwen Yan, Ling Huang, Xu Liu, Huige Yang, Qingqing Sun, Xuying Liu, Hanyu Jia

Chemical Research in Chinese Universities ›› , Vol. 40 ›› Issue (5) : 824-841. DOI: 10.1007/s40242-024-4176-4
Review

Non-invasive Healthcare Analytical Platform Based on Organic Electrochemical Transistors

Author information +
History +

Abstract

Non-invasive bioelectronics, especially organic electrochemical transistors (OECTs), have drawn extensive attentions of academical and medical communities by virtue of their efficient bio-electronic interfacing, water-involved ionic transport, excellent ionic-electronic coupling, ultralow power consumption, wide detectable range, and outstanding detection sensitivity. Designable structure diversity, low-temperature solution processability, facile bio/chemical functionalization, and excellent biocompatibility of organic mixed ionic-electronic conductors (OMIECs) render OECTs particularly suitable for non-invasive or minimally invasive healthcare analytical platform. Here, we comprehensively review recent advances of the non-invasive analytical healthcare applications based on OECTs, especially on the detection of biomarkers or metabolites in the excretory biofluids, as well as the recording of electrophysiological signals. A brief introduction of OECT and its comparison with other organic thin-film transistors upon device configuration and working mechanism are firstly discussed. State-of-the-art non-invasive OECT-based biosensors are summarized on their detection of ionic and molecular biomarkers, following with circuit design strategies of OECTs for real-time and in-situ electrophysiological recording from skin surface. In conclusion, remaining barriers and future challenges of non-invasive OECT-based bioelectronics towards lower detection limit, more accurate quantitative relationship between analyte concentrations and measured parameters, more intimate device-tissue interface, and long-term operation stability are deeply analyzed with a critical outlook.

Cite this article

Download citation ▾
Xingyu Hu, Ning Mao, Xinwen Yan, Ling Huang, Xu Liu, Huige Yang, Qingqing Sun, Xuying Liu, Hanyu Jia. Non-invasive Healthcare Analytical Platform Based on Organic Electrochemical Transistors. Chemical Research in Chinese Universities, , 40(5): 824‒841 https://doi.org/10.1007/s40242-024-4176-4

References

[[1]]
Nawaz A, Liu Q, Leong W L, Fairfull-Smith K E, Sonar P Adv. Mater., 2021, 33: 2101874.
CrossRef Google scholar
[[2]]
Gao W, Emaminejad S, Nyein H Y Y, Challa S, Chen K, Peck A, Fahad H M, Ota H, Shiraki H, Kiriya D, Lien D-H, Brooks G A, Davis R W, Javey A Nature, 2016, 529: 509.
CrossRef Google scholar
[[3]]
Brothers M C, DeBrosse M, Grigsby C C, Naik R R, Hussain S M, Heikenfeld J, Kim S S Acc. Chem. Res., 2019, 52: 297.
CrossRef Google scholar
[[4]]
Moser M, Ponder J F Jr., Wadsworth A, Giovannitti A, McCulloch I Adv. Funct. Mater., 2019, 29: 1807033.
CrossRef Google scholar
[[5]]
Di C, Zhang F, Zhu D Adv. Mater., 2013, 25: 313.
CrossRef Google scholar
[[6]]
Zhao C-X, Liu J-N, Li B-Q, Ren D, Chen X, Yu J, Zhang Q Adv. Funct. Mater., 2020, 30: 2003619.
CrossRef Google scholar
[[7]]
Wang N, Yang A, Fu Y, Li Y, Yan F Acc. Chem. Res., 2019, 52: 277.
CrossRef Google scholar
[[8]]
Song J J, Liu H, Zhao Z Y, Lin P, Yan F Adv. Mater., 2024, 36: 2300034.
CrossRef Google scholar
[[9]]
Rivnay J, Inal S, Salleo A, Owens R M, Berggren M, Malliaras G G Nat. Rev. Mater., 2018, 3: 17086.
CrossRef Google scholar
[[10]]
Jia H, Lei T J. Mater. Chem. C, 2019, 7: 12809.
CrossRef Google scholar
[[11]]
Jia H, Huang Z, Li P, Zhang S, Wang Y, Wang J-Y, Gu X, Lei T J. Mater. Chem. C, 2021, 9: 4927.
CrossRef Google scholar
[[12]]
Hu X, Mao N, Zhao D, Liu X, Sun Q, Yang H, Liu X, Jia H Green Chem. Eng., 2024, 5: 273.
CrossRef Google scholar
[[13]]
Venkatraman V, Friedlein J T, Giovannitti A, Maria I P, McCulloch I, McLeod R R, Rivnay J Adv. Sci., 2018, 5: 1800453.
CrossRef Google scholar
[[14]]
Salim A, Lim S Biosens. Bioelectron., 2019, 141: 111422.
CrossRef Google scholar
[[15]]
Parlak O, Keene S T, Marais A, Curto V F, Salleo A Sci. Adv., 2018, 4: eaar2904.
CrossRef Google scholar
[[16]]
Ohayon D, Nikiforidis G, Savva A, Giugni A, Wustoni S, Palanisamy T, Chen X, Maria I P, Fabrizio E D, Costa P M F J, McCulloch I, Inal S Nat. Mater., 2020, 19: 456.
CrossRef Google scholar
[[17]]
Liang Y, Guo T, Zhou L, Offenhäusser A, Mayer D Materials, 2020, 13: 2577.
CrossRef Google scholar
[[18]]
Braendlein M, Pappa A-M, Ferro M, Lopresti A, Acquaviva C, Mamessier E, Malliaras G G, Owens R M Adv. Mater., 2017, 29: 1605744.
CrossRef Google scholar
[[19]]
Lin P, Yan F, Chan H L W ACS Appl. Mater. Interfaces, 2010, 2: 1637.
CrossRef Google scholar
[[20]]
Go J, Nair P R, Alam M A J. Appl. Phys., 2012, 112: 034516.
CrossRef Google scholar
[[21]]
Dai Y, Dai S, Li N, Li Y, Moser M, Strzalka J, Prominski A, Liu Y, Zhang Q, Li S, Hu H, Liu W, Chatterji S, Cheng P, Tian B, McCulloch I, Xu J, Wang S Adv. Mater., 2022, 34: 2201178.
CrossRef Google scholar
[[22]]
Wu X, Tam T L D, Chen S, Salim T, Zhao X, Zhou Z, Lin M, Xu J, Loo Y-L, Leong W L Adv. Mater., 2022, 34: 2206118.
CrossRef Google scholar
[[23]]
Zhou Z, Wu X, Tam T L D, Tang C G, Chen S, Hou K, Li T, He Q, Sit J-J, Xu J, Leong W L Adv. Funct. Mater., 2024, 34: 2305780.
CrossRef Google scholar
[[24]]
Marks A, Griggs S, Gasparini N, Moser M Adv. Mater. Interfaces, 2022, 9: 2102039.
CrossRef Google scholar
[[25]]
Han S, Yamamoto S, Polyravas A G, Malliaras G G Adv. Mater., 2020, 32: 2004790.
CrossRef Google scholar
[[26]]
Romele P, Gkoupidenis P, Koutsouras D A, Lieberth K, Kovács-Vajna Z M, Blom P W M, Torricelli F Nat. Commun., 2020, 11: 3743.
CrossRef Google scholar
[[27]]
Keene S T, Fogarty D, Cooke R, Casadevall C D, Salleo A, Parlak O Adv. Healthcare Mater., 2019, 8: 1901321.
CrossRef Google scholar
[[28]]
Pappa A M, Ohayon D, Giovannitti A, Maria I P, Savva A, Uguz I, Rivnay J, McCulloch I, Owens R M, Inal S Sci. Adv., 2018, 6: eaat0911.
CrossRef Google scholar
[[29]]
Tang H, Yan F, Lin P, Xu J, Chan H L W Adv. Funct. Mater., 2011, 21: 2264.
CrossRef Google scholar
[[30]]
Burtscher B, Manco Urbina PA, Diacci C, Borghi S, Pinti M, Cossarizza A, Salvarani C, Berggren M, Biscarini F, Simon DT, Bortolotti C A Adv. Healthcare Mater., 2021, 10: 2100955.
CrossRef Google scholar
[[31]]
Liu H, Yang A, Song J, Wang N, Lam P, Li Y, Law H K, Yan F Sci. Adv., 2021, 7: eabg8387.
CrossRef Google scholar
[[32]]
Nyein H Y Y, Gao W, Shahpar Z, Emaminejad S, Challa S, Chen K, Fahad H M, Tai L-C, Ota H, Davis R W, Javey A ACS Nano, 2016, 10: 7216.
CrossRef Google scholar
[[33]]
Lippi G, South A M, Henry B M Ann. Clin. Biochem., 2020, 57: 262.
CrossRef Google scholar
[[34]]
Sessolo M, Rivnay J, Bandiello E, Malliaras G G, Bolink H J Adv. Mater., 2014, 26: 4803.
CrossRef Google scholar
[[35]]
Woeppel A B, Schaefer J, Kim H J, Boudouris B W, Beaudoin SP ACS Appl. Polym. Mater., 2022, 4: 6667.
CrossRef Google scholar
[[36]]
Li T, Cheryl Koh J Y, Moudgil A, Cao H, Wu X, Chen S, Hou K, Surendran A, Stephen M, Tang C, Wang C, Wang Q J, Tay C Y, Leong W L ACS Nano, 2022, 16: 12049.
CrossRef Google scholar
[[37]]
Chen X, Ji J, Peng Y, Gao Z, Zhao M, Tang B, Liu Y J. Mater. Chem. C, 2023, 11: 7722.
CrossRef Google scholar
[[38]]
Wang Y, Wang Y, Zhu R, Tao Y, Chen Y, Liu Q, Liu X, Wang D Mater. Sci. Eng. B, 2022, 278: 115657.
CrossRef Google scholar
[[39]]
Pierre A, Doris S E, Lujan R, Street R A Adv. Mater. Technol., 2019, 4: 1800577.
CrossRef Google scholar
[[40]]
Wustoni S, Combe C, Ohayon D, Akhtar M H, McCulloch I, Inal S Adv. Funct. Mater., 2019, 29: 1904403.
CrossRef Google scholar
[[41]]
Saxena V, Shirodkar V, Prakash R Appl. Biochem. Biotechnol., 2001, 96: 63.
CrossRef Google scholar
[[42]]
Mousavi Z, Ekholm A, Bobacka J, Ivaska A Electroanalysis, 2009, 21: 472.
CrossRef Google scholar
[[43]]
Ghittorelli M, Lingstedt L, Romele P, Crăciun N I, Kovács-Vajna Z M, Blom P W M, Torricelli F Nat. Commun., 2018, 9: 1441.
CrossRef Google scholar
[[44]]
Koutsouras DA, Lieberth K, Torricelli F, Gkoupidenis P, Blom P W M Adv. Mater. Technol., 2021, 6: 2100591.
CrossRef Google scholar
[[45]]
Wu X, Surendran A, Ko J, Filonik O, Herzig EM, Müller-Buschbaum P, Leong W L Adv. Mater., 2019, 31: 1805544.
CrossRef Google scholar
[[46]]
Wang Q, Bai X, Liu F, Li P, Tang Q Microchem. J., 2024, 205: 111260.
CrossRef Google scholar
[[47]]
Chen J, Yang D, Zhu G, Zhang R, Wang B, Chang Z, Dai J, Wu W, Rotenberg M Y, Fang Y Biosens. Bioelectron., 2024, 255: 116229.
CrossRef Google scholar
[[48]]
Jiang X, Shi C, Wang Z, Huang L, Chi L Adv. Mater., 2024, 36: 2308952.
CrossRef Google scholar
[[49]]
Jiang Z, Ye D, Xiang L, He Z, Dai X, Yang J, Xiong Q, Ma Y, Zhi D, Zou Y, Peng Q, Wang S, Li J, Zhang F, Di C Nat. Mater., 2024, 101: 1689
[[50]]
Zhang R, Zhao C, Ma W, Yan H ACS Appl. Electron. Mater., 2024, 6: 3431.
CrossRef Google scholar
[[51]]
Liu Z, Song H, Lin G, Zhong W, Zhang Y, Yang A, Liu Y, Duan J, Zhou Y, Jiao K, Ding D, Feng Y, Yue J, Zhao W, Lin X Adv. Sci., 2024, 11: 2400451.
CrossRef Google scholar
[[52]]
Kim Y, Lim T, Kim C-H, Yeo CS, Seo K, Kim S-M, Kim J, Park SY, Ju S, Yoon M-H NPG Asia Mater., 2018, 10: 1086.
CrossRef Google scholar
[[53]]
Wang J, Lee S, Yokota T, Someya T Adv. Funct. Mater., 2022, 32: 2200458.
CrossRef Google scholar
[[54]]
Tarabella G, Villani M, Calestani D, Mosca R, Iannotta S, Zappettini A, Coppedè N J. Mater. Chem., 2012, 22: 23830.
CrossRef Google scholar
[[55]]
Bihar E, Deng Y, Miyake T, Saadaoui M, Malliaras G G, Rolandi M Sci. Rep., 2016, 6: 27582.
CrossRef Google scholar
[[56]]
Ji W, Wu D, Tang W, Xi X, Su Y, Guo X, Liu R Sensor Actuat. B: Chem., 2020, 304: 127414.
CrossRef Google scholar
[[57]]
Lyu X M, Duan Y C, Chen Y L, Cheng S Chem. Res. Chinese Universities, 2023, 39: 877.
CrossRef Google scholar
[[58]]
Fu Y, Wang N, Yang A, Law H K, Li L, Yan F Adv. Mater., 2017, 29: 1703787.
CrossRef Google scholar
[[59]]
Song Y, Zhang H, Mukhopadhyaya T, Hall A S, Katz H E Biosens. Bioelectron., 2022, 216: 114691.
CrossRef Google scholar
[[60]]
Pappa A M, Ohayon D, Giovannitti A, Maria I P, Savva A, Uguz I, Rivnay J, McCulloch I, Owens R M, Inal S Sci. Adv., 2018, 4: eaat0911.
CrossRef Google scholar
[[61]]
Janardhanan J A, Chen L Y, Liu C T, Sheng L H, Tseng H S, Wu P I, She J W, Hsiao S Y, Yu H H Anal. Chem., 2022, 94: 7584.
CrossRef Google scholar
[[62]]
Pappa A M, Curto V F, Braendlein M, Strakosas X, Donahue M J, Fiocchi M, Malliaras G G, Owens R M Adv. Healthcare. Mater., 2016, 5: 2295.
CrossRef Google scholar
[[63]]
Zhang S, Ling H, Chen Y, Cui Q, Ni J, Wang X, Hartel M C, Meng X, Lee K, Lee J, Sun W, Lin H, Emaminejad S, Ahadian S, Ashammakhi N, Dokmeci M R, Khademhosseini A Adv. Funct. Mater., 2020, 30: 1906016.
CrossRef Google scholar
[[64]]
Campana A, Cramer T, Simon DT, Berggren M, Biscarini F Adv. Mater., 2014, 26: 3874.
CrossRef Google scholar
[[65]]
Wu X, Chen S, Moser M, Moudgil A, Griggs S, Marks A, Li T, McCulloch I, Leong W L Adv. Funct. Mater., 2023, 33: 2209354.
CrossRef Google scholar
[[66]]
Park S, Heo S W, Lee W, Inoue D, Jiang Z, Yu K, Jinno H, Hashizume D, Sekino M, Yokota T, Fukuda K, Tajima K, Someya T Nature, 2018, 561: 516.
CrossRef Google scholar
[[67]]
Lee H, Lee S, Lee W, Yokota T, Fukuda K, Someya T Adv. Funct. Mater., 2019, 29: 1906982.
CrossRef Google scholar
[[68]]
Lee W, Kobayashi S, Nagase M, Jimbo Y, Saito I, Inoue Y, Yambe T, Sekino M, Malliaras G G, Yokota T, Tanaka M, Someya T Sci. Adv., 2018, 4: eaau2426.
CrossRef Google scholar
[[69]]
Song J, Liu H, Zhao Z, Guo X, Liu C-K, Griggs S, Marks A, Zhu Y, Law H K-W, McCulloch I, Yan F Sci. Adv., 2023, 9: eadd9627.
CrossRef Google scholar
[[70]]
Chen J, Huang W, Zheng D, Xie Z, Zhuang X, Zhao D, Chen Y, Su N, Chen H, Pankow R M, Gao Z, Yu J, Guo X, Cheng Y, Strzalka J, Yu X, Marks T J, Facchetti A Nat. Mater., 2022, 21: 564.
CrossRef Google scholar
[[71]]
Cea C, Spyropoulos G D, Jastrzebska-Perfect P, Ferrero J J, Gelinas J N, Khodagholy D Nat. Mater., 2020, 19: 679.
CrossRef Google scholar
[[72]]
Yao Y, Huang W, Chen J H, Wang G, Chen H M, Zhuang X M, Ying Y B, Ping J F, Marks T J, Facchetti A Proc. Natl. Acad. Sci. USA, 2021, 118: e2021836118.
CrossRef Google scholar
[[73]]
Spyropoulos G D, Gelinas J N, Khodagholy D Sci. Adv., 2019, 5: eaau7378.
CrossRef Google scholar
[[74]]
Wu M, Yao K, Huang N, Li H, Zhou J, Shi R, Li J, Huang X, Li J, Jia H, Gao Z, Wong T H, Li D, Hou S, Liu Y, Zhang S, Song E, Yu J, Yu X Adv. Sci., 2023, 10: 2300504.
CrossRef Google scholar
[[75]]
Braendlein M, Lonjaret T, Leleux P, Badier J-M, Malliaras G G Adv. Sci., 2017, 4: 1600247.
CrossRef Google scholar
[[76]]
Rivnay J, Leleux P, Sessolo M, Khodagholy D, Hervé T, Fiocchi M, Malliaras GG Adv. Mater., 2013, 25: 7010.
CrossRef Google scholar
[[77]]
Rashid R B, Du W, Griggs S, Maria I P, McCulloch I, Rivnay J Sci. Adv., 2021, 7: eabh1055.
CrossRef Google scholar
[[78]]
Wang J, Lee S, Yokota T, Jimbo Y, Wang Y, Nayeem M O G, Nishinaka M, Someya T ACS Appl. Electron. Mater., 2020, 2: 3601.
CrossRef Google scholar
[[79]]
Zhang R, Zhang J, Tan F, Yang D, Wang B, Dai J, Qi Y, Ran L, He W, Lv Y, Wang F, Fang Y Mater. Today Bio., 2022, 16: 100385.
CrossRef Google scholar
[[80]]
Tang T, Liu Y, Jiang Y Chem. Res. Chinese Universities, 2022, 38: 866.
CrossRef Google scholar
[[81]]
Moudgil A, Hou K, Li T, Leong W L Adv. Mater. Technol., 2023, 8: 2300605.
CrossRef Google scholar
[[82]]
Zhao Z, Tian Z, Yan F Cell Rep. Phys. Sci., 2023, 4: 101673.
CrossRef Google scholar
[[83]]
Moudgil A, Leong W L IEEE Sens. J., 2023, 23: 8028.
CrossRef Google scholar
[[84]]
Li N, Li Y, Cheng Z, Liu Y, Dai Y, Kang S, Li S, Shan N, Wai S, Ziaja A, Wang Y, Strzalka J, Liu W, Zhang C, Gu X, Hubbell J A, Tian B, Wang S Science, 2023, 381: 686.
CrossRef Google scholar
[[85]]
Zhong Y, Saleh A, Inal S Macromol. Biosci., 2021, 21: 2100187.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/