Non-invasive Healthcare Analytical Platform Based on Organic Electrochemical Transistors
Xingyu Hu, Ning Mao, Xinwen Yan, Ling Huang, Xu Liu, Huige Yang, Qingqing Sun, Xuying Liu, Hanyu Jia
Non-invasive Healthcare Analytical Platform Based on Organic Electrochemical Transistors
Non-invasive bioelectronics, especially organic electrochemical transistors (OECTs), have drawn extensive attentions of academical and medical communities by virtue of their efficient bio-electronic interfacing, water-involved ionic transport, excellent ionic-electronic coupling, ultralow power consumption, wide detectable range, and outstanding detection sensitivity. Designable structure diversity, low-temperature solution processability, facile bio/chemical functionalization, and excellent biocompatibility of organic mixed ionic-electronic conductors (OMIECs) render OECTs particularly suitable for non-invasive or minimally invasive healthcare analytical platform. Here, we comprehensively review recent advances of the non-invasive analytical healthcare applications based on OECTs, especially on the detection of biomarkers or metabolites in the excretory biofluids, as well as the recording of electrophysiological signals. A brief introduction of OECT and its comparison with other organic thin-film transistors upon device configuration and working mechanism are firstly discussed. State-of-the-art non-invasive OECT-based biosensors are summarized on their detection of ionic and molecular biomarkers, following with circuit design strategies of OECTs for real-time and in-situ electrophysiological recording from skin surface. In conclusion, remaining barriers and future challenges of non-invasive OECT-based bioelectronics towards lower detection limit, more accurate quantitative relationship between analyte concentrations and measured parameters, more intimate device-tissue interface, and long-term operation stability are deeply analyzed with a critical outlook.
Organic electrochemical transistor / Non-invasive / Bioelectronics / Ion-selective / Electrophysiological monitoring
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
/
〈 |
|
〉 |