Promoted Non-enzymatic Glucose Sensor Based on Synergistic Effect of Hydrothermal Synthesized Ni(OH)2-Graphene Nanocomposite

Yuqing Cai, Qingyan Cui, Huanrong Zhang, Xinlei Ma, Mianqi Xue

Chemical Research in Chinese Universities ›› , Vol. 40 ›› Issue (5) : 914-921. DOI: 10.1007/s40242-024-4170-x
Article

Promoted Non-enzymatic Glucose Sensor Based on Synergistic Effect of Hydrothermal Synthesized Ni(OH)2-Graphene Nanocomposite

Author information +
History +

Abstract

Although glucose electrochemical sensors based on enzymes play a dominant role in market, their stability remains a problem due to the inherent nature of enzymes. Therefore, glucose sensors that are independent on enzymes have attracted more attention for the development of stable detection devices. Here we present an enzyme-free glucose sensor based on Ni(OH)2 and reduced graphene oxide (rGO). The as-fabricated sensor still exhibits excellent electrocatalytic activity for detecting glucose under enzyme independent conditions. The enhanced catalytic performance may due to synergistic effect as follows: (i) the interaction between the Ni2+ and π electron of graphene induces the formation of the β-phase Ni(OH)2 with higher catalytic activity; (ii) the frozen dry process works as a secondary filtration, getting rid of poorly formed Ni(OH)2 particles with low catalytic activity; (iii) the rGO network with good conductivity provides a good electronic pathway for promoting electron transfer to reduce the response time. Based on the synergistic effect, the sensor exhibits a wide linear detection range from 0.2 µmol/L to 1.0 µmol/L and a low detection limit (0.1 µmol/L, S/N=3). The excellent detection performance, as well as the easy and low-cost preparation method, suggests the promising applicability of the sensor in the glucose detection market.

Cite this article

Download citation ▾
Yuqing Cai, Qingyan Cui, Huanrong Zhang, Xinlei Ma, Mianqi Xue. Promoted Non-enzymatic Glucose Sensor Based on Synergistic Effect of Hydrothermal Synthesized Ni(OH)2-Graphene Nanocomposite. Chemical Research in Chinese Universities, , 40(5): 914‒921 https://doi.org/10.1007/s40242-024-4170-x

References

[[1]]
Teymourian H, Barfidokht A, Wang J Chem. Soc. Rev., 2020, 49: 7671.
CrossRef Google scholar
[[2]]
Maicas S Fermentation, 2021, 7: 187.
CrossRef Google scholar
[[3]]
Swift T A, Fagan D, Benito-Alifonso D, Hill S A, Yallop M L, Oliver T A A, Lawson T, Galan M C, Whitney H M New Phyto., 2021, 229: 783.
CrossRef Google scholar
[[4]]
Li Z, Shen F, Mishra R K, Wang Z, Zhao X, Zhu Z Crit. Rev. Anal. Chem., 2024, 54: 269.
CrossRef Google scholar
[[5]]
Ferri S, Kojima K, Sode K J. Diabetes Sci. Technol., 2011, 5: 1068.
CrossRef Google scholar
[[6]]
Vashist S K, Zheng D, Al-Rubeaan K, Luong J H T, Sheu F S Anal. Chim. Acta, 2011, 703: 124.
CrossRef Google scholar
[[7]]
Yoo E H, Lee S Y Sensors, 2010, 10: 4558.
CrossRef Google scholar
[[8]]
Bankar S B, Bule M V, Singhal R S, Ananthanarayan L Biotechnol. Adv., 2009, 27: 489.
CrossRef Google scholar
[[9]]
Wang W, Li Z, Li M, Fang L, Chen F, Han S, Lan L, Chen J, Chen Q, Wang H, Liu C, Yang Y, Yue W, Xie Z Nano-Micro Lett., 2022, 14: 184.
CrossRef Google scholar
[[10]]
Li Z, Chen F, Zhu N, Zhang L, Xie Z ACS Nano, 2023, 17: 21935.
CrossRef Google scholar
[[11]]
Li Z., Meng X., Fang C., Yi Z., Wu Y., Liu X., Zhong W., Zhang L., Xie Z., Chem. Res. Chinese Universities, 2024, https://doi.org/10.1007/s40242-024-4111-8
[[12]]
Hwang D-W, Lee S, Seo M, Chung T D Anal. Chim. Acta, 2018, 1033: 1.
CrossRef Google scholar
[[13]]
Lee H, Hong Y J, Baik S, Hyeon T, Kim D H Adv. Healthc. Mater., 2018, 7: 1701150.
CrossRef Google scholar
[[14]]
Zhang S, Zhao W, Zeng J, He Z, Wang X, Zhu Z, Hu R, Liu C, Wang Q Mater. Today Bio., 2023, 20: 100638.
CrossRef Google scholar
[[15]]
Keum D H, Kim S K, Koo J, Lee G H, Jeon C, Mok J W, Mun B H, Lee K J, Kamrani E, Joo C K, Shin S, Sim J Y, Myung D, Yun S H, Bao Z, Hahn S K Sci. Adv., 2020, 6: eaba3252.
CrossRef Google scholar
[[16]]
Daboss E V, Shcherbacheva E V, Karyakin A A Sensor Actuators B: Chem., 2023, 380: 133337.
CrossRef Google scholar
[[17]]
Lipinska W, Grochowska K, Siuzdak K Nanomaterials, 2021, 11: 1156.
CrossRef Google scholar
[[18]]
Hassan M H, Vyas C, Grieve B, Bartolo P Sensors, 2021, 21: 4672.
CrossRef Google scholar
[[19]]
Gengan S, Gnanamuthu R M, Sankaranarayanan S, Reddy V M, Marepally B C, Biroju R K Sensor Actuators A: Phys., 2023, 353: 114232.
CrossRef Google scholar
[[20]]
Li H., Xiao N., Jiang M., Long J., Li Z., Zhu Z., Crit. Rev. Anal. Chem., 2024, https://doi.org/10.1080/10408347.2024.2339955
[[21]]
Adeel M, Rahman M M, Caligiuri I, Canzonieri V, Rizzolio F, Daniele S Biosens. Bioelectron., 2020, 165: 112331.
CrossRef Google scholar
[[22]]
Chen J, Liu X, Zheng G, Feng W, Wang P, Gao J, Liu J, Wang M, Wang Q Small, 2023, 19: 2205924.
CrossRef Google scholar
[[23]]
Youcef M, Hamza B, Nora H, Walid B, Salima M, Ahmed B, Malika F, Marc S, Christian B, Wassila D, Eddine M D, Larbi Z Microchem. J., 2022, 178: 107332.
CrossRef Google scholar
[[24]]
Waqas M, Yang L, Wei Y, Sun Y, Yang F, Fan Y, Chen W Electrochim. Acta, 2023, 440: 141375.
CrossRef Google scholar
[[25]]
Gao Y J, Yang F Y, Yu Q H, Fan R, Yang M, Rao S Q, Lan Q C, Yang Z J, Yang Z Q Microchim. Acta, 2019, 186: 1.
CrossRef Google scholar
[[26]]
Chakraborty P, Dhar S, Debnath K, Majumder T, Mondal S P Sensor Actuators B: Chem., 2019, 283: 776.
CrossRef Google scholar
[[27]]
Li Y L, Xu Z Z, Chen L S, Liu Y H Proceedings of Conference on Advanced Sensor Systems and Applications X, 2020 Electr Network
[[28]]
Subash V S, Alagumalai K, Chen S M, Shanmugam R, Shiuan H J New J. Chem., 2020, 44: 15071.
CrossRef Google scholar
[[29]]
Wang L L, Miao X L, Qu Y N, Duan C P, Wang B, Yu Q L, Gao J, Song D D, Li Y T, Yin Z J. Electroanal. Chem., 2020, 858: 113810.
CrossRef Google scholar
[[30]]
Wang H, Wang K Int. J. Electrochem. Sci., 2021, 16: 211242.
CrossRef Google scholar
[[31]]
Bao W J, Hai W F, Bao L Y, Yang F, Liu Y S, Goda T, Liu J H Mater. Chem. Front., 2021, 5: 7684.
CrossRef Google scholar
[[32]]
Wang S Z, Zheng M, Zhang X, Zhuo M P, Zhou Q Q, Su Y, Zheng M, Yuan G T, Wang Z S ACS Appl. Nano Mater., 2021, 4: 5808.
CrossRef Google scholar
[[33]]
Zhai X Y, Cao W, Sun S, Cao Y, Wang L, He N, Yao D, Zhao J Electroanal. Chem., 2022, 918: 116491.
CrossRef Google scholar
[[34]]
Ouyang Y, Zheng X, Li Q, Ye N, Mo G Anal. Chim. Acta, 2022, 1209: 339839.
CrossRef Google scholar
[[35]]
Wang Y, Wei Y, Li S, Hu G Sensors, 2023, 23: 6277.
CrossRef Google scholar
[[36]]
Berni A, Amine A, Garcia-Guzman J J, Cubillana-Aguilera L, Palacios-Santander J M Biosensors, 2023, 13: 678.
CrossRef Google scholar
[[37]]
Wei Y, Hui Y, Lu X, Liu C, Zhang Y, Fan Y, Chen W J. Electroanal. Chem., 2023, 933: 117276.
CrossRef Google scholar
[[38]]
Luo G X, Liu J L, Xie J Q, Jing W X, Li M, Zhao L B, Li Z K, Yang P, Jiang Z D Dalton Trans., 2023, 52: 12988.
CrossRef Google scholar
[[39]]
Mashhadizadeh M H, Abdollahi G ChemistrySelect, 2023, 8: e202204359.
CrossRef Google scholar
[[40]]
Liang H H, Luo Y, Xiao Y W, Chen R F, Wang L, Song Y H Ceram. Int., 2024, 50: 977.
CrossRef Google scholar
[[41]]
Jin D L, Xu Z J, Zhao H Y, Deng S L, Qu Z Z, Dou R Y, Liu W L Microchem. J., 2024, 205: 111367.
CrossRef Google scholar
[[42]]
Chen Z, Li L, Xiao X, Zhang Y, Zhang J, Jiang Q, Hu X, Wang Y Green Chem., 2024, 26: 3801.
CrossRef Google scholar
[[43]]
Chen Y, Sun Y, Li Y, Wen Z, Peng X, He Y, Hou Y, Fan J, Zang G, Zhang Y Talanta, 2024, 278: 126499.
CrossRef Google scholar
[[44]]
Xue Y T, Chen Z C, Chen X, Han G C, Feng X Z, Kraatz H B Electrochim. Acta, 2024, 483: 144009.
CrossRef Google scholar
[[45]]
Zhou B Y, Fu J J, Yuan Y H, Han F, Huo K F, Chu P K, Zhang X M Microchem. J., 2024, 205: 111244.
CrossRef Google scholar
[[46]]
Damirchi Z, Firoozbakhtian A, Hosseini M, Ganjali M R Microchim. Acta, 2024, 191: 137.
CrossRef Google scholar
[[47]]
Saraswathi K A, Reddy M S B, Jayarambabu N, Rao K V, Rao T V ACS Appl. Nano Mater., 2024, 7: 13110.
CrossRef Google scholar
[[48]]
Kaewjangwad C, Somsiri S, Wangchuk S, Saichanapan J, Saisahas K, Samoson K, Soleh A, Promsuwan K, Limbut W Electrochim. Acta, 2024, 491: 144292.
CrossRef Google scholar
[[49]]
Li B, Wang R, Li G, Shen Q, Zou L Microchem. J., 2024, 199: 109947.
CrossRef Google scholar
[[50]]
Jiang Q Q, Ma X L, Chai Y Q, Ma H, Tang F, Hua K, Chen R Q, Jin Z X, Wang X S, Ji J H, Yang X B, Li R, Lian H Q, Xue M Q ACS Appl. Mater. Interfaces, 2021, 13: 5425.
CrossRef Google scholar
[[51]]
Zang X L, Wang X S, Yang Z H, Wang X W, Li R, Chen J T, Ji J H, Xue MQ Nanoscale, 2017, 9: 19346.
CrossRef Google scholar
[[52]]
Zou X J, Chai Y Q, Ma H, Jiang Q Q, Zhang W, Ma X L, Wang X S, Lian H Q, Huang X L, Ji J H, Xue M Q Adv. Mater. Technol., 2021, 6: 2001188.
CrossRef Google scholar
[[53]]
Chai Y, Ma H, Ma X, Zhang X, He Y, Wang Y, Jiang Q, Wang X, Ji J, Xue M J. Mater. Chem. A, 2020, 8: 10891.
CrossRef Google scholar
[[54]]
Xue M, Chen D, Wang X, Chen J, Chen G F J. Mater. Chem. A, 2015, 3: 7715.
CrossRef Google scholar
[[55]]
Zhang H R, Ma X L, Chen R Q, Wang X S, Ma H, Chai Y Q, Cao T Q, Rao W, Chen J T, Ji J H, Zhu N, Xue M Q Chem. Eng. J., 2022, 450: 138061.
CrossRef Google scholar
[[56]]
Dou W J, Liu J S, Li M J. Mol. Liq., 2021, 322: 114516.
CrossRef Google scholar
[[57]]
Yan J, Sun W, Wei T, Zhang Q, Fan Z J, Wei F J. Mater. Chem., 2012, 22: 11494.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/