Unveiling the Mechanism of Glycerol Oxidation to Lactic Acid on Pt/Sn-MFI Zeolite: an In situ Solid-state NMR Study

Xueyuan Shen , Guodong Qi , Jiawei Liang , Ruichen Wang , Jun Xu , Feng Deng

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 935 -942.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 935 -942. DOI: 10.1007/s40242-024-4168-4
Article

Unveiling the Mechanism of Glycerol Oxidation to Lactic Acid on Pt/Sn-MFI Zeolite: an In situ Solid-state NMR Study

Author information +
History +
PDF

Abstract

Heterogeneous glycerol (GLY) oxidation offers a promising route for the production of lactic acid (LA), a key monomer in biodegradable bioplastics. However, the specific reaction pathways remain poorly understood. This study presents a mechanistic investigation of GLY oxidation to LA using Pt/Sn-MFI catalysts. Characterizations via DR-UV-Vis spectroscopy, 119Sn NMR, and TEM reveal the formation of zeolite framework Sn and well-dispersed Pt nanoparticles in Pt/Sn-MFI. The Lewis acidity of framework Sn in MFI zeolite is confirmed through 31P NMR probe techniques. GLY conversion and LA selectivity correlate strongly with framework Sn concentration and the presence of Pt nanoparticles. In situ 13C solid-state NMR experiments, complemented by two-dimensional 13C correlation NMR, allow real-time monitoring of GLY conversion and identification of various mobile and rigid (surface-adsorbed) species. Results indicate that GLY preferentially transforms to LA via a dihydroxyacetone (DHA) intermediate, facilitated by the Pt-Sn synergistic effect. However, accumulation of surface-adsorbed LA on Sn sites promotes consecutive oxidation of GLY to glyceric acid, tartaric acid, and ultimately CO2.

Keywords

Biomass conversion / In situ NMR / Glycerol oxidation / Zeolite / Reaction mechanism

Cite this article

Download citation ▾
Xueyuan Shen, Guodong Qi, Jiawei Liang, Ruichen Wang, Jun Xu, Feng Deng. Unveiling the Mechanism of Glycerol Oxidation to Lactic Acid on Pt/Sn-MFI Zeolite: an In situ Solid-state NMR Study. Chemical Research in Chinese Universities, 2024, 40(6): 935-942 DOI:10.1007/s40242-024-4168-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ruggerio C A. Sci. Total Environ., 2021, 786: 147481

[2]

Lee R. Renewable Resources and Sustainable Development, 2019, Cham: Springer

[3]

Xiang W, Wang W, Du L, Zhao B, Liu X, Zhang X, Yao L, Ge M. Chem. Res. Chinese Universities, 2023, 39: 326

[4]

Jin Y, Hu S, Zhang Z, Zhu B, Bai D. Resour. Chem. Mater., 2022, 1: 129

[5]

Mika L T, Cséfalvay E, Németh Á. Chem. Rev., 2018, 118: 505

[6]

Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107: 2411

[7]

Besson M, Gallezot P, Pinel C. Chem. Rev., 2014, 114: 1827

[8]

Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F. Chem. Soc. Rev., 2020, 49: 4273

[9]

Xiao Y, Xiao G, Varma A. Ind. Eng. Chem. Res., 2013, 52: 14291

[10]

Zulqarnain, Yusoff M H, M. Ayoub M, Ramzan N, Nazir M H, Zahid I, Abbas N, Elboughdiri N, Mirza C R, Butt T A. ACS Omega, 2021, 6: 19099

[11]

Hoekman S K, Broch A, Robbins C, Ceniceros E, Natarajan M. Renew. Sustain. Energy Rev., 2012, 16: 143

[12]

Ftouni J, Villandier N, Auneau F, Besson M, Djakovitch L, Pinel C. Catal. Today, 2015, 257: 267

[13]

Tran T T V, Obpirompoo M, Kongparakul S, Karnjanakom S, Reubroycharoen P, Guan G, Chanlek N, Samart C. Carbon Resour. Convers., 2020, 3: 182

[14]

Diamantopoulou P, Papanikolaou S. Process Biochem., 2023, 124: 113

[15]

Katryniok B, Kimura H, Skrzyूska E, Girardon J-S, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F. Green Chem., 2011, 13: 1960

[16]

Metsoviti M, Zeng A-P, Koutinas A A, Papanikolaou S. J. Biotechnol., 2013, 163: 408

[17]

Lumongga Putri Tambunan M, Abdullah I, Krisyuningsih Krisnandi Y. Carbon Resour., 2024, 7: 100188

[18]

Filippousi R, Tsouko E, Mordini K, Ladakis D, Koutinas A A, Aggelis G, Papanikolaou S. Carbon Resour. Convers., 2022, 5: 92

[19]

Khouri N G, Bahú J O, Blanco-Llamero C, Severino P, Concha V O C, Souto E B. J. Mol. Struct., 2024, 1309: 138243

[20]

Feng S, Zhao W, He J, Zhang Y. Chem. Res. Chinese Universities, 2023, 39: 750

[21]

Wang Z., Zhang Y., Wang Y., Li J., Jia X., Wu Z., Carbon Resour. Convers., https://doi.org/10.1016/j.crcon.2024.100250

[22]

Kishida H, Jin F, Zhou Z, Moriya T, Enomoto H. Chem. Lett., 2005, 34: 1560

[23]

Shen Y, Zhang S, Li H, Ren Y, Liu H. Chem. Eur. J., 2010, 16: 7368

[24]

Lakshmanan P, Upare P P, Le N T, Hwang Y K, Hwang D W, Lee U H, Kim H R, Chang J S. Appl. Catal. A: Gen., 2013, 468: 260

[25]

Roy D, Subramaniam B, Chaudhari R V. ACS Catal., 2011, 1: 548

[26]

Sharninghausen L S, Campos J, Manas M G, Crabtree R H. Nat. Commun., 2014, 5: 5084

[27]

Tsuji A, Rao K T V, Nishimura S, Takagaki A, Ebitani K. ChemSusChem, 2011, 4: 542

[28]

Xu J, Zhang H, Zhao Y, Yu B, Chen S, Li Y, Hao L, Liu Z. Green Chem., 2013, 15: 1520

[29]

Tao M, Yi X, Delidovich I, Palkovits R, Shi J, Wang X. ChemSusChem, 2015, 8: 4195

[30]

Wang X, Liang F, Huang C, Li Y, Chen B. Catal. Sci. Technol., 2016, 6: 6551

[31]

Peeters E, Calderon-Ardila S, Hermans I, Dusselier M, Sels B F. ACS Catal., 2022, 12: 9559

[32]

Cho H J, Chang C C, Fan W. Green Chem., 2014, 16: 3428

[33]

Lu T, Fu X, Zhou L, Su Y, Yang X, Han L, Wang J, Song C. ACS Catal., 2017, 7: 7274

[34]

Duan Y, Luo Q, Nie R, Wang J, Zhang Y, Lu T, Xu C. Catalysts, 2022, 12: 104

[35]

Hunger M, Weitkamp J. Angew. Chem. Int. Ed., 2001, 40: 2954

[36]

Qi G D, Wang Q, Xu J, Deng F. Chem. Soc. Rev., 2021, 50: 8382

[37]

Zasukhin D S, Kostyukov I A, Kasyanov I A, Kolyagin Y G, Ivanova I I. Pet. Chem., 2021, 61: 875

[38]

Xu J, Wang Q, Li S, Deng F. Solid-state NMR in Zeolite Catalysis, 2019, Singapore: Springer

[39]

Wang W, Xu J, Deng F. Natl. Sci. Rev., 2022, 9: nwac155

[40]

Yuan E, Dai W, Wu G, Guan N, Hunger M, Li L. Microporous Mesoporous Mat., 2018, 270: 265

[41]

Gao W, Qi G, Wang Q, Wang W, Li S, Hung I, Gan Z, Xu J, Deng F. Angew. Chem. Int. Ed., 2021, 60: 10709

[42]

Ye X, Qi G, Xu J, Deng F. Chem. J. Chinese Universities, 2020, 41: 960

[43]

Xia C, Liu Y, Lin M, Peng X, Zhu B, Shu X. Catal. Today, 2018, 316: 193

[44]

Li Z, Qi G, Xu J, Deng F. Chem. J. Chinese Universities, 2022, 43: 20220138

[45]

Qi G, Wang Q, Xu J, Wu Q, Wang C, Zhao X, Meng X, Xiao F, Deng F. Comm. Chem., 2018, 1: 22

[46]

Chu Y, Yu Z, Zheng A, Fang H, Zhang H, Huang S-J, Liu S-B, Deng F. J. Phys. Chem. C, 2011, 115: 7660

[47]

Sushkevich V L, Kots P A, Kolyagin Y G, Yakimov A V, Marikutsa A V, Ivanova I I. J. Phys. Chem. C, 2019, 123: 5540

[48]

Sushkevich V L, Ivanova I I, Yakimov A V. J. Phys. Chem. C, 2017, 121: 11437

[49]

Yang G, Zhou L, Han X. J. Mol. Catal. A: Chem., 2012, 363/364: 371

[50]

Wu X, Wang X, Zhang L, Wang X, Song S, Zhang H. Angew. Chem. Int. Ed., 2024, 63: e202317594

[51]

Zavrazhnov S A, Esipovich A L, Danov S M, Zlobin S Y, Belousov A S. Kinet. Catal., 2018, 59: 459

[52]

Kim K D, Wang Z, Jiang Y, Hunger M, Huang J. Green Chem., 2019, 21: 3383

[53]

Jaegers N R, Hu W, Weber T J, Hu J Z. Sci. Rep., 2021, 11: 7800

[54]

Mahapatra M, Tysoe W T. Surf. Sci., 2014, 629: 132

AI Summary AI Mindmap
PDF

255

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/