Unveiling the Mechanism of Glycerol Oxidation to Lactic Acid on Pt/Sn-MFI Zeolite: an In situ Solid-state NMR Study

Xueyuan Shen, Guodong Qi, Jiawei Liang, Ruichen Wang, Jun Xu, Feng Deng

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 935-942.

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 935-942. DOI: 10.1007/s40242-024-4168-4
Article

Unveiling the Mechanism of Glycerol Oxidation to Lactic Acid on Pt/Sn-MFI Zeolite: an In situ Solid-state NMR Study

Author information +
History +

Abstract

Heterogeneous glycerol (GLY) oxidation offers a promising route for the production of lactic acid (LA), a key monomer in biodegradable bioplastics. However, the specific reaction pathways remain poorly understood. This study presents a mechanistic investigation of GLY oxidation to LA using Pt/Sn-MFI catalysts. Characterizations via DR-UV-Vis spectroscopy, 119Sn NMR, and TEM reveal the formation of zeolite framework Sn and well-dispersed Pt nanoparticles in Pt/Sn-MFI. The Lewis acidity of framework Sn in MFI zeolite is confirmed through 31P NMR probe techniques. GLY conversion and LA selectivity correlate strongly with framework Sn concentration and the presence of Pt nanoparticles. In situ 13C solid-state NMR experiments, complemented by two-dimensional 13C correlation NMR, allow real-time monitoring of GLY conversion and identification of various mobile and rigid (surface-adsorbed) species. Results indicate that GLY preferentially transforms to LA via a dihydroxyacetone (DHA) intermediate, facilitated by the Pt-Sn synergistic effect. However, accumulation of surface-adsorbed LA on Sn sites promotes consecutive oxidation of GLY to glyceric acid, tartaric acid, and ultimately CO2.

Cite this article

Download citation ▾
Xueyuan Shen, Guodong Qi, Jiawei Liang, Ruichen Wang, Jun Xu, Feng Deng. Unveiling the Mechanism of Glycerol Oxidation to Lactic Acid on Pt/Sn-MFI Zeolite: an In situ Solid-state NMR Study. Chemical Research in Chinese Universities, 2024, 40(6): 935‒942 https://doi.org/10.1007/s40242-024-4168-4

References

[[1]]
RuggerioC A. Sci. Total Environ., 2021, 786: 147481
[[2]]
LeeR. Renewable Resources and Sustainable Development, 2019 Cham Springer
[[3]]
XiangW, WangW, DuL, ZhaoB, LiuX, ZhangX, YaoL, GeM. Chem. Res. Chinese Universities, 2023, 39: 326
[[4]]
JinY, HuS, ZhangZ, ZhuB, BaiD. Resour. Chem. Mater., 2022, 1: 129
[[5]]
MikaL T, CséfalvayE, NémethÁ. Chem. Rev., 2018, 118: 505
[[6]]
CormaA, IborraS, VeltyA. Chem. Rev., 2007, 107: 2411
[[7]]
BessonM, GallezotP, PinelC. Chem. Rev., 2014, 114: 1827
[[8]]
XuC, PaoneE, Rodríguez-PadrónD, LuqueR, MaurielloF. Chem. Soc. Rev., 2020, 49: 4273
[[9]]
XiaoY, XiaoG, VarmaA. Ind. Eng. Chem. Res., 2013, 52: 14291
[[10]]
Zulqarnain, YusoffM H, M. AyoubM, RamzanN, NazirM H, ZahidI, AbbasN, ElboughdiriN, MirzaC R, ButtT A. ACS Omega, 2021, 6: 19099
[[11]]
HoekmanS K, BrochA, RobbinsC, CenicerosE, NatarajanM. Renew. Sustain. Energy Rev., 2012, 16: 143
[[12]]
FtouniJ, VillandierN, AuneauF, BessonM, DjakovitchL, PinelC. Catal. Today, 2015, 257: 267
[[13]]
TranT T V, ObpirompooM, KongparakulS, KarnjanakomS, ReubroycharoenP, GuanG, ChanlekN, SamartC. Carbon Resour. Convers., 2020, 3: 182
[[14]]
DiamantopoulouP, PapanikolaouS. Process Biochem., 2023, 124: 113
[[15]]
KatryniokB, KimuraH, SkrzyूskaE, GirardonJ-S, FongarlandP, CapronM, DucoulombierR, MimuraN, PaulS, DumeignilF. Green Chem., 2011, 13: 1960
[[16]]
MetsovitiM, ZengA-P, KoutinasA A, PapanikolaouS. J. Biotechnol., 2013, 163: 408
[[17]]
Lumongga Putri TambunanM, AbdullahI, Krisyuningsih KrisnandiY. Carbon Resour., 2024, 7: 100188
[[18]]
FilippousiR, TsoukoE, MordiniK, LadakisD, KoutinasA A, AggelisG, PapanikolaouS. Carbon Resour. Convers., 2022, 5: 92
[[19]]
KhouriN G, BahúJ O, Blanco-LlameroC, SeverinoP, ConchaV O C, SoutoE B. J. Mol. Struct., 2024, 1309: 138243
[[20]]
FengS, ZhaoW, HeJ, ZhangY. Chem. Res. Chinese Universities, 2023, 39: 750
[[21]]
Wang Z., Zhang Y., Wang Y., Li J., Jia X., Wu Z., Carbon Resour. Convers., https://doi.org/10.1016/j.crcon.2024.100250
[[22]]
KishidaH, JinF, ZhouZ, MoriyaT, EnomotoH. Chem. Lett., 2005, 34: 1560
[[23]]
ShenY, ZhangS, LiH, RenY, LiuH. Chem. Eur. J., 2010, 16: 7368
[[24]]
LakshmananP, UpareP P, LeN T, HwangY K, HwangD W, LeeU H, KimH R, ChangJ S. Appl. Catal. A: Gen., 2013, 468: 260
[[25]]
RoyD, SubramaniamB, ChaudhariR V. ACS Catal., 2011, 1: 548
[[26]]
SharninghausenL S, CamposJ, ManasM G, CrabtreeR H. Nat. Commun., 2014, 5: 5084
[[27]]
TsujiA, RaoK T V, NishimuraS, TakagakiA, EbitaniK. ChemSusChem, 2011, 4: 542
[[28]]
XuJ, ZhangH, ZhaoY, YuB, ChenS, LiY, HaoL, LiuZ. Green Chem., 2013, 15: 1520
[[29]]
TaoM, YiX, DelidovichI, PalkovitsR, ShiJ, WangX. ChemSusChem, 2015, 8: 4195
[[30]]
WangX, LiangF, HuangC, LiY, ChenB. Catal. Sci. Technol., 2016, 6: 6551
[[31]]
PeetersE, Calderon-ArdilaS, HermansI, DusselierM, SelsB F. ACS Catal., 2022, 12: 9559
[[32]]
ChoH J, ChangC C, FanW. Green Chem., 2014, 16: 3428
[[33]]
LuT, FuX, ZhouL, SuY, YangX, HanL, WangJ, SongC. ACS Catal., 2017, 7: 7274
[[34]]
DuanY, LuoQ, NieR, WangJ, ZhangY, LuT, XuC. Catalysts, 2022, 12: 104
[[35]]
HungerM, WeitkampJ. Angew. Chem. Int. Ed., 2001, 40: 2954
[[36]]
QiG D, WangQ, XuJ, DengF. Chem. Soc. Rev., 2021, 50: 8382
[[37]]
ZasukhinD S, KostyukovI A, KasyanovI A, KolyaginY G, IvanovaI I. Pet. Chem., 2021, 61: 875
[[38]]
XuJ, WangQ, LiS, DengF. Solid-state NMR in Zeolite Catalysis, 2019 Singapore Springer
[[39]]
WangW, XuJ, DengF. Natl. Sci. Rev., 2022, 9: nwac155
[[40]]
YuanE, DaiW, WuG, GuanN, HungerM, LiL. Microporous Mesoporous Mat., 2018, 270: 265
[[41]]
GaoW, QiG, WangQ, WangW, LiS, HungI, GanZ, XuJ, DengF. Angew. Chem. Int. Ed., 2021, 60: 10709
[[42]]
YeX, QiG, XuJ, DengF. Chem. J. Chinese Universities, 2020, 41: 960
[[43]]
XiaC, LiuY, LinM, PengX, ZhuB, ShuX. Catal. Today, 2018, 316: 193
[[44]]
LiZ, QiG, XuJ, DengF. Chem. J. Chinese Universities, 2022, 43: 20220138
[[45]]
QiG, WangQ, XuJ, WuQ, WangC, ZhaoX, MengX, XiaoF, DengF. Comm. Chem., 2018, 1: 22
[[46]]
ChuY, YuZ, ZhengA, FangH, ZhangH, HuangS-J, LiuS-B, DengF. J. Phys. Chem. C, 2011, 115: 7660
[[47]]
SushkevichV L, KotsP A, KolyaginY G, YakimovA V, MarikutsaA V, IvanovaI I. J. Phys. Chem. C, 2019, 123: 5540
[[48]]
SushkevichV L, IvanovaI I, YakimovA V. J. Phys. Chem. C, 2017, 121: 11437
[[49]]
YangG, ZhouL, HanX. J. Mol. Catal. A: Chem., 2012, 363/364: 371
[[50]]
WuX, WangX, ZhangL, WangX, SongS, ZhangH. Angew. Chem. Int. Ed., 2024, 63: e202317594
[[51]]
ZavrazhnovS A, EsipovichA L, DanovS M, ZlobinS Y, BelousovA S. Kinet. Catal., 2018, 59: 459
[[52]]
KimK D, WangZ, JiangY, HungerM, HuangJ. Green Chem., 2019, 21: 3383
[[53]]
JaegersN R, HuW, WeberT J, HuJ Z. Sci. Rep., 2021, 11: 7800
[[54]]
MahapatraM, TysoeW T. Surf. Sci., 2014, 629: 132

Accesses

Citations

Detail

Sections
Recommended

/