Near-infrared Emissive 1,2-Dioxetane-based Chemiluminescent Probes

Yingqi Chen, Richard Budianta, Yingying Ning

Chemical Research in Chinese Universities ›› , Vol. 40 ›› Issue (5) : 806-823. DOI: 10.1007/s40242-024-4166-6
Review

Near-infrared Emissive 1,2-Dioxetane-based Chemiluminescent Probes

Author information +
History +

Abstract

Chemiluminescence, a phenomenon emitting light from chemical reactions rather than photon absorption, has gained significant interest for applications in bioimaging and biosensing due to its high sensitivity and low background interference. Now there is a growing interest in near-infrared (NIR) chemiluminescent probes for improved tissue penetration and reduced autofluorescence. This review summarizes NIR emissive chemiluminescent probes based on 1,2-dioxetane and discusses their chemical structures and applications. Structure modification strategies for red-shifting wavelength and enhancing brightness include incorporating electron-withdrawing groups, designing chemiluminophore-fluorophore cassettes, and exploring alternative chemiluminescent scaffolds. This review aims to inspire the exploration of NIR chemiluminescent probes in disease detection and treatment.

Cite this article

Download citation ▾
Yingqi Chen, Richard Budianta, Yingying Ning. Near-infrared Emissive 1,2-Dioxetane-based Chemiluminescent Probes. Chemical Research in Chinese Universities, , 40(5): 806‒823 https://doi.org/10.1007/s40242-024-4166-6

References

[[1]]
Vacher M, Fdez. Galván I, Ding B, Schramm S, Berraud-Pache R, Naumov P, Ferré N, Liu Y, Navizet I, Roca-Sanjuán D, Baader W J, Lindh R Chem. Rev., 2018, 118: 6927.
CrossRef Google scholar
[[2]]
Yang M, Huang J, Fan J, Du J, Pu K, Peng X Chem. Soc. Rev., 2020, 49: 6800.
CrossRef Google scholar
[[3]]
Garcia-Campana A M, Baeyens W R G Analusis, 2000, 28: 686.
CrossRef Google scholar
[[4]]
Yang X, Chen X, Hou G, Guan R, Shao R, Xie M Adv. Funct. Mater., 2016, 26: 393.
CrossRef Google scholar
[[5]]
You X, Li Y Arab. J. Chem., 2019, 12: 69.
CrossRef Google scholar
[[6]]
Yang J, Yin W, Van R, Yin K, Wang P, Zheng C, Zhu B, Ran K, Zhang C, Kumar M, Shao Y, Ran C Nat. Commun., 2020, 11: 4052.
CrossRef Google scholar
[[7]]
Ye S, Hananya N, Green O, Chen H, Zhao A Q, Shen J, Shabat D, Yang D Angew. Chem. Int. Ed., 2020, 59: 14326.
CrossRef Google scholar
[[8]]
Gholap S P, Yao C, Green O, Babjak M, Jakubec P, Malatinský T, Ihssen J, Wick L, Spitz U, Shabat D Bioconjug. Chem., 2021, 32: 991.
CrossRef Google scholar
[[9]]
Peukert C, Popat Gholap S, Green O, Pinkert L, van den Heuvel J, van Ham M, Shabat D, Brönstrup M Angew. Chem. Int. Ed., 2022, 61: e202201423.
CrossRef Google scholar
[[10]]
Dai Y, Zhang K, Yuan X, Xie X, Zhan Z, Lv Y Anal. Chem., 2023, 95: 8310.
CrossRef Google scholar
[[11]]
Ning Y, Tang J, Liu Y W, Jing J, Sun Y, Zhang J L Chem. Sci., 2018, 9: 3742.
CrossRef Google scholar
[[12]]
Ning Y, Cheng S, Wang J X, Liu Y W, Feng W, Li F, Zhang J L Chem. Sci., 2019, 10: 4227.
CrossRef Google scholar
[[13]]
Shang A, Zhao L, Li Z, Cheng Z, Jin H, Feng Z, Chen Z, Zhang H, Lu P Chem. Res. Chinese Universities, 2022, 38: 1461.
CrossRef Google scholar
[[14]]
Li X, Tan W, Bai X, Li F Chem. Res. Chinese Universities, 2023, 39: 192.
CrossRef Google scholar
[[15]]
Li C, Zhang Y, Wang M, Zhang Y, Chen G, Li L, Wu D, Wang Q Biomaterials, 2014, 35: 393.
CrossRef Google scholar
[[16]]
Yoshida H, Nakao R, Nohta H, Yamaguchi M Dyes Pigm., 2000, 47: 239.
CrossRef Google scholar
[[17]]
Periyasami G, Martelo L, Baleizâo C, Berberan-Santos M N New J. Chem., 2014, 38: 2258.
CrossRef Google scholar
[[18]]
Chen F, Zhang Y, Li T, Peng D, Qi Z, Song J, Deng T, Liu F Chin. Chem. Lett., 2023, 34: 107496.
CrossRef Google scholar
[[19]]
Rink S, Duerkop A, Jacobi von Wangelin A, Seidel M, Baeumner A J Anal. Chim. Acta, 2021, 1188: 339161.
CrossRef Google scholar
[[20]]
Teranishi K Luminescence, 2007, 22: 147.
CrossRef Google scholar
[[21]]
Goto T, Takagi T Bull. Chem. Soc. Jpn., 1980, 53: 833.
CrossRef Google scholar
[[22]]
Toya Y, Kayano T, Sato K, Goto T Bull. Chem. Soc. Jpn., 1992, 65: 2475.
CrossRef Google scholar
[[23]]
Chandross E A Tetrahedron Lett., 1963, 4: 761.
CrossRef Google scholar
[[24]]
Fan W, Li L, Yuan J, Ma X, Jia J, Zhang X Anal. Chem., 2021, 93: 17043.
CrossRef Google scholar
[[25]]
Huang J, Deng Z, Ding C, Jin Y, Wang B, Chen J Microchem. J., 2022, 181: 107782.
CrossRef Google scholar
[[26]]
Wang C, Wu Z, Hao M, Chen B, Zhu J, Cui X, Wang T Sensor. Actuat. B: Chem., 2023, 388: 133840.
CrossRef Google scholar
[[27]]
Chen Z, Su L, Wu Y, Liu J, Wu R, Li Q, Wang C, Liu L, Song J Proc. Natl. Acad. Sci., 2023, 120: e2205186120.
CrossRef Google scholar
[[28]]
Luo T, Huang S, Bai S, Feng B, Huang W, Cheng X, Liu M, Yao H, Zeng W Food Chem., 2024, 447: 138954.
CrossRef Google scholar
[[29]]
Merényi G, Lind J, Eriksen T E J. Biolumin. Chemilumin., 1990, 5: 53.
CrossRef Google scholar
[[30]]
Chen F, Xia X, Ye D, Li T, Huang X, Cai C, Zhu C, Lin C, Deng T, Liu F Anal. Chem., 2023, 95: 5773.
CrossRef Google scholar
[[31]]
Liu C, Wang X, Liu J, Yue Q, Chen S, Lam J W Y, Luo L, Tang B Z Adv. Mater., 2020, 32: 2004685.
CrossRef Google scholar
[[32]]
Shimomura O, Goto T, Hirata Y B. Chem. Soc. Jpn., 1957, 30: 329.
CrossRef Google scholar
[[33]]
Lee Y D, Lim C K, Singh A, Koh J, Kim J, Kwon I C, Kim S ACS Nano, 2012, 6: 6759.
CrossRef Google scholar
[[34]]
Samadi-Maybodi A, Akhoondi R, Javad Chaichi M J. Fluoresc., 2010, 20: 671.
CrossRef Google scholar
[[35]]
Kazemi S Y, Abedirad S M Spectrochim. Acta A, 2023, 292: 122367.
CrossRef Google scholar
[[36]]
Zhang C, Jin J, Liu K, Ma X, Zhang X Chin. Chem. Lett., 2021, 32: 3931.
CrossRef Google scholar
[[37]]
Li L, Lin D, Yang F, Xiao Y, Yang L, Yu S, Jiang C ACS Appl. Nano Mater., 2021, 4: 3932.
CrossRef Google scholar
[[38]]
Schaap A P, Chen T, Handley R S, DeSilva R, Giri B P Tetrahedron Lett., 1987, 28: 1155.
CrossRef Google scholar
[[39]]
Koo J Y, Schuster G B J. Am. Chem. Soc., 1977, 99: 6107.
CrossRef Google scholar
[[40]]
Gnaim S, Shabat D J. Am. Chem. Soc., 2017, 139: 10002.
CrossRef Google scholar
[[41]]
Babin B M, Fernandez-Cuervo G, Sheng J, Green O, Ordonez A A, Turner M L, Keller L J, Jain S K, Shabat D, Bogyo M ACS Cent. Sci., 2021, 7: 803.
CrossRef Google scholar
[[42]]
Das S, Ihssen J, Wick L, Spitz U, Shabat D Chem. Eur. J., 2020, 26: 3647.
CrossRef Google scholar
[[43]]
Gu B, Dong C, Shen R, Qiang J, Wei T, Wang F, Lu S, Chen X Sens. Actuat. B: Chem., 2019, 301: 127111.
CrossRef Google scholar
[[44]]
Gutkin S, Gandhesiri S, Brik A, Shabat D Bioconjug. Chem., 2021, 32: 2141.
CrossRef Google scholar
[[45]]
Gutkin S, Green O, Raviv G, Shabat D, Portnoy O Bioconjug. Chem., 2020, 31: 2488.
CrossRef Google scholar
[[46]]
Roth-Konforti M E, Bauer C R, Shabat D Angew. Chem. Int. Ed., 2017, 56: 15633.
CrossRef Google scholar
[[47]]
Roth-Konforti M, Green O, Hupfeld M, Fieseler L, Heinrich N, Ihssen J, Vorberg R, Wick L, Spitz U, Shabat D Angew. Chem. Int. Ed., 2019, 58: 10361.
CrossRef Google scholar
[[48]]
Shelef O, Gutkin S, Feder D, Ben-Bassat A, Mandelboim M, Haitin Y, Ben-Tal N, Bacharach E, Shabat D Chem. Sci., 2022, 13: 12348.
CrossRef Google scholar
[[49]]
Son S, Won M, Green O, Hananya N, Sharma A, Jeon Y, Kwak J H, Sessler J L, Shabat D, Kim J S Angew. Chem. Int. Ed., 2019, 58: 1739.
CrossRef Google scholar
[[50]]
Zhao C, Cui H, Duan J, Zhang S, Lv J Anal. Chem., 2018, 90: 2201.
CrossRef Google scholar
[[51]]
Hananya N, Eldar Boock A, Bauer C R, Satchi-Fainaro R, Shabat D J. Am. Chem. Soc., 2016, 138: 13438.
CrossRef Google scholar
[[52]]
Wei X, Huang J, Zhang C, Xu C, Pu K, Zhang Y Angew. Chem. Int. Ed., 2023, 62: e202213791.
CrossRef Google scholar
[[53]]
Takakura H Molecules, 2021, 26: 1618.
CrossRef Google scholar
[[54]]
Green O, Eilon T, Hananya N, Gutkin S, Bauer C R, Shabat D ACS Cent. Sci., 2017, 3: 349.
CrossRef Google scholar
[[55]]
Gutkin S, Tannous R, Jaber Q, Fridman M, Shabat D Chem. Sci., 2023, 14: 6953.
CrossRef Google scholar
[[56]]
Bronstein I, Edwards B, Voyta J C J. Biolumin. Chemilumin., 1989, 4: 99.
CrossRef Google scholar
[[57]]
Matsumoto M, Akimoto T, Matsumoto Y, Watanabe N Tetrahedron Lett., 2005, 46: 6075.
CrossRef Google scholar
[[58]]
Huang J, Cheng P, Xu C, Liew S S, He S, Zhang Y, Pu K Angew. Chem. Int. Ed., 2022, 61: e202203235.
CrossRef Google scholar
[[59]]
Xu S, Pan W, Chen L, Liu S, Ren T, Liu H, Liu Y, Huan S, Yuan L, Zhang X Biomaterials, 2023, 293: 121955.
CrossRef Google scholar
[[60]]
Scholes G D Annu. Rev. Phys. Chem., 2003, 54: 57.
CrossRef Google scholar
[[61]]
Watanabe N, Kino H, Watanabe S, Ijuin H K, Yamada M, Matsumoto M Tetrahedron, 2012, 68: 6079.
CrossRef Google scholar
[[62]]
Yan Y, Shi P, Song W, Bi S Theranostics, 2019, 9: 4047.
CrossRef Google scholar
[[63]]
Yan Y, Wang X, Hai X, Song W, Ding C, Cao J, Bi S TrAC Trends Anal. Chem., 2020, 123: 115755.
CrossRef Google scholar
[[64]]
Dos Remedios C G, Moens P D J J. Struct. Biol., 1995, 115: 175.
CrossRef Google scholar
[[65]]
Lin W, Yuan L, Cao Z, Feng Y, Song J Angew. Chem. Int. Ed., 2010, 49: 375.
CrossRef Google scholar
[[66]]
Cao D, Zhu L, Liu Z, Lin W J. Photochem. Photobiol. C: Photochem. Rev., 2020, 44: 100371.
CrossRef Google scholar
[[67]]
Han J, Jose J, Mei E, Burgess K Angew. Chem. Int. Ed., 2007, 46: 1684.
CrossRef Google scholar
[[68]]
Ryan L S, Gerberich J, Haris U, Nguyen D, Mason R P, Lippert A R ACS Sens., 2020, 5: 2925.
CrossRef Google scholar
[[69]]
Kagalwala H N, Gerberich J, Smith C J, Mason R P, Lippert A R Angew. Chem. Int. Ed., 2022, 61: e202115704.
CrossRef Google scholar
[[70]]
Wu Y, Sutton G D, Halamicek M D S, Xing X, Bao J, Teets T S Chem. Sci., 2022, 13: 8804.
CrossRef Google scholar
[[71]]
Kagalwala H N, Bueno L, Wanniarachchi H, Unruh D K, Hamal K B, Pavlich C I, Carlson G J, Pinney K G, Mason R P, Lippert A R Anal. Sens., 2023, 3: e202200085
[[72]]
Green O, Gnaim S, Blau R, Eldar-Boock A, Satchi-Fainaro R, Shabat D J. Am. Chem. Soc., 2017, 139: 13243.
CrossRef Google scholar
[[73]]
Liu Q, Sun C, Dai R, Yan C, Zhang Y, Zhu W, Guo Z Coord. Chem. Rev., 2024, 503: 215652.
CrossRef Google scholar
[[74]]
Yang M, Zhang J, Shabat D, Fan J, Peng X ACS Sens., 2020, 5: 3158.
CrossRef Google scholar
[[75]]
Huang J, Jiang Y, Li J, Huang J, Pu K Angew. Chem. Int. Ed., 2021, 60: 3999.
CrossRef Google scholar
[[76]]
Huang J, Zhang C, Wang X, Wei X, Pu K Angew. Chem. Int. Ed., 2023, 62: e202303982.
CrossRef Google scholar
[[77]]
Liu J, Chen Z, Huo H, Chen L, Wu Y, Zhang X, Su L, Li Q, Song J Chin. J. Chem., 2022, 40: 2400.
CrossRef Google scholar
[[78]]
Liu J, Huang J, Wei X, Cheng P, Pu K Adv. Mater., 2024, 36: 2310605.
CrossRef Google scholar
[[79]]
Huang J, Huang J, Cheng P, Jiang Y, Pu K Adv. Funct. Mater., 2020, 30: 2003628.
CrossRef Google scholar
[[80]]
Haris U, Kagalwala H N, Kim Y L, Lippert A R Acc. Chem. Res., 2021, 54: 2844.
CrossRef Google scholar
[[81]]
Yang J, Zhu B, Zhang J, Liang S H, Shen S, Ran C Angew. Chem. Int. Ed., 2024 e202409896
[[82]]
Matsumoto M, Watanabe N, Kasuga N C, Hamada F, Tadokoro K Tetrahedron Lett., 1997, 38: 2863.
CrossRef Google scholar
[[83]]
Li S, Zhang G, He Y, Yang L, Li H, Long C, Cui Y, Wang X Anal. Chem., 2023, 95: 13191.
CrossRef Google scholar
[[84]]
Watanabe N, Takatsuka H, Ijuin H K, Matsumoto M Tetrahedron, 2020, 76: 131203.
CrossRef Google scholar
[[85]]
Shang Q, Li S, He Y, Zhang Y, Fu T, Han S, Huang W, Wang X, Xu J Anal. Chem., 2024, 96: 2286.
CrossRef Google scholar
[[86]]
Hananya N, Reid J P, Green O, Sigman M S, Shabat D Chem. Sci., 2019, 10: 1380.
CrossRef Google scholar
[[87]]
Tannous R, Shelef O, Gutkin S, David M, Leirikh T, Ge L, Jaber Q, Zhou Q, Ma P, Fridman M, Spitz U, Houk K N, Shabat D ACS Cent. Sci., 2024, 10: 28.
CrossRef Google scholar
[[88]]
Zhan Z, Dai Y, Li Q, Lv Y TrAC Trends Anal. Chem., 2021, 134: 116129.
CrossRef Google scholar
[[89]]
Wang B, Chen Z, Cen X, Liang Y, Tan L, Liang E, Zheng L, Zheng Y, Zhan Z, Cheng K Chem. Sci., 2022, 13: 2324.
CrossRef Google scholar
[[90]]
Checa J, Aran J M J. Inflamm. Res., 2020, 13: 1057.
CrossRef Google scholar
[[91]]
Li B, Kim Y L, Lippert A R Antioxid. Redox Signal., 2022, 36: 337.
CrossRef Google scholar
[[92]]
Sies H, Belousov V V, Chandel N S, Davies M J, Jones D P, Mann G E, Murphy M P, Yamamoto M, Winterbourn C Nat. Rev. Mol. Cell Biol, 2022, 23: 499.
CrossRef Google scholar
[[93]]
Cheng P, Miao Q, Li J, Huang J, Xie C, Pu K J. Am. Chem. Soc., 2019, 141: 10581.
CrossRef Google scholar
[[94]]
Nemes R, Koltai E, Taylor A W, Suzuki K, Gyori F, Radak Z Antioxidants, 2018, 7: 85.
CrossRef Google scholar
[[95]]
Yang Y, Wang S, Lu L, Zhang Q, Yu P, Fan Y, Zhang F Angew. Chem. Int. Ed., 2020, 59: 18380.
CrossRef Google scholar
[[96]]
Zhang S, Yuan H, Sun S, Qin C, Qiu Q, Feng Y, Liu Y, Li Y, Xu L, Ying Y, Qi J, Wang Y Adv. Sci., 2023, 10: 2207651.
CrossRef Google scholar
[[97]]
Robinson P K Essays Biochem., 2015, 59: 1.
CrossRef Google scholar
[[98]]
Shelef O, Gutkin S, Feder D, Ben-Bassat A, Mandelboim M, Haitin Y, Ben-Tal N, Bacharach E, Shabat D Chem. Sci., 2022, 13: 123. 48
CrossRef Google scholar
[[99]]
Atia A, Abdullah A Res. J. Pharm. Biol. Chem. Sci., 2014, 5: 533
[[100]]
Lima E, Reis L V Molecules, 2023, 28: 5092.
CrossRef Google scholar
[[101]]
Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J Biomed. Pharmacother., 2018, 106: 1098.
CrossRef Google scholar
[[102]]
Ning Y, Jin G Q, Zhang J L Acc. Chem. Res., 2019, 52: 2620.
CrossRef Google scholar
[[103]]
Yanovsky R L, Bartenstein D W, Rogers G S, Isakoff S J, Chen S T Photodermatol. Photoimmunol. Photomed., 2019, 35: 295.
CrossRef Google scholar
[[104]]
Kuang S, Zhu B, Zhang J, Yang F, Wu B, Ding W, Yang L, Shen S, Liang S H, Mondal P, Kumar M, Tanzi R E, Zhang C, Chao H, Ran C Angew. Chem. Int. Ed., 2023, 62: e202312519.
CrossRef Google scholar
[[105]]
Ran C, Pu K Angew. Chem. Int. Ed., 2024, 63: e202314468.
CrossRef Google scholar
[[106]]
Gao J, Chen Z, Li X, Yang M, Lv J, Li H, Yuan Z Int. J. Mol. Sci., 2022, 23: 12556.
CrossRef Google scholar
[[107]]
Vitorino R, Barros A S, Guedes S, Caixeta D C, Sabino-Silva R Photodiagnosis Photodyn. Ther., 2023, 42: 103633.
CrossRef Google scholar
[[108]]
Lou J, Tang X, Zhang H, Guan W, Lu C Angew. Chem. Int. Ed., 2021, 60: 13029.
CrossRef Google scholar
[[109]]
Baptista M S, Cadet J, Di Mascio P, Ghogare A A, Greer A, Hamblin M R, Lorente C, Nunez S C, Ribeiro M S, Thomas A H, Vignoni M, Yoshimura T M Photochem. Photobiol., 2017, 93: 912.
CrossRef Google scholar
[[110]]
Digby E M, Tung M T, Kagalwala H N, Ryan L S, Lippert A R, Beharry A A ACS Chem. Biol., 2022, 17: 1082.
CrossRef Google scholar
[[111]]
Huang C, Zhou W, Wu R, Guan W, Ye N Nanomaterials, 2023, 13: 1726.
CrossRef Google scholar
[[112]]
Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z Chem. Rev., 2015, 115: 11718.
CrossRef Google scholar
[[113]]
Chen C, Zhang X, Gao Z, Feng G, Ding D Nat. Protoc., 2024, 19: 2408.
CrossRef Google scholar
[[114]]
Zhu Z, Tang Z, Phillips J A, Yang R, Wang H, Tan W J. Am. Chem. Soc., 2008, 130: 10856.
CrossRef Google scholar
[[115]]
Coleman J E Annu. Rev. Biophys., 1992, 21: 441.
CrossRef Google scholar
[[116]]
Harris H Clin. Chim. Acta, 1990, 186: 133.
CrossRef Google scholar
[[117]]
Adam W, Bronstein I, Edwards B, Engel T, Reinhardt D, Schneider F W, Trofimov A V, Vasil’ev R F J. Am. Chem. Soc., 1996, 118: 10400.
CrossRef Google scholar
[[118]]
Schaap A P, Akhavan H, Romano L J Clin. Chem., 1989, 35: 1863.
CrossRef Google scholar
[[119]]
Fan N, Li P, Wu C, Wang X, Zhou Y, Tang B ACS Appl. Bio Mater., 2021, 4: 1740.
CrossRef Google scholar
[[120]]
Ma Y, Li X, Li A, Yang P, Zhang C, Tang B Angew. Chem. Int. Ed., 2017, 56: 13752.
CrossRef Google scholar
[[121]]
Lu C, Zhang C, Wang P, Zhao Y, Yang Y, Wang Y, Yuan H, Qu S, Zhang X, Song G, Pu K Chem., 2020, 6: 2314.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/