Near-infrared Emissive 1,2-Dioxetane-based Chemiluminescent Probes

Yingqi Chen , Richard Budianta , Yingying Ning

Chemical Research in Chinese Universities ›› : 1 -18.

PDF
Chemical Research in Chinese Universities ›› : 1 -18. DOI: 10.1007/s40242-024-4166-6
Review

Near-infrared Emissive 1,2-Dioxetane-based Chemiluminescent Probes

Author information +
History +
PDF

Abstract

Chemiluminescence, a phenomenon emitting light from chemical reactions rather than photon absorption, has gained significant interest for applications in bioimaging and biosensing due to its high sensitivity and low background interference. Now there is a growing interest in near-infrared (NIR) chemiluminescent probes for improved tissue penetration and reduced autofluorescence. This review summarizes NIR emissive chemiluminescent probes based on 1,2-dioxetane and discusses their chemical structures and applications. Structure modification strategies for red-shifting wavelength and enhancing brightness include incorporating electron-withdrawing groups, designing chemiluminophore-fluorophore cassettes, and exploring alternative chemiluminescent scaffolds. This review aims to inspire the exploration of NIR chemiluminescent probes in disease detection and treatment.

Keywords

Chemiluminescence / Near-infrared / Dioxetane / Bioimaging / Biosensing

Cite this article

Download citation ▾
Yingqi Chen, Richard Budianta, Yingying Ning. Near-infrared Emissive 1,2-Dioxetane-based Chemiluminescent Probes. Chemical Research in Chinese Universities 1-18 DOI:10.1007/s40242-024-4166-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vacher M, Fdez. Galván I, Ding B, Schramm S, Berraud-Pache R, Naumov P, Ferré N, Liu Y, Navizet I, Roca-Sanjuán D, Baader W J, Lindh R. Chem. Rev., 2018, 118: 6927.

[2]

Yang M, Huang J, Fan J, Du J, Pu K, Peng X. Chem. Soc. Rev., 2020, 49: 6800.

[3]

Garcia-Campana A M, Baeyens W R G. Analusis, 2000, 28: 686.

[4]

Yang X, Chen X, Hou G, Guan R, Shao R, Xie M. Adv. Funct. Mater., 201, 26: 393.

[5]

You X, Li Y. Arab. J. Chem., 2019, 12: 69.

[6]

Yang J, Yin W, Van R, Yin K, Wang P, Zheng C, Zhu B, Ran K, Zhang C, Kumar M, Shao Y, Ran C. Nat. Commun., 2020, 11: 4052.

[7]

Ye S, Hananya N, Green O, Chen H, Zhao A Q, Shen J, Shabat D, Yang D. Angew. Chem. Int. Ed., 2020, 59: 14326.

[8]

Gholap S P, Yao C, Green O, Babjak M, Jakubec P, Malatinský T, Ihssen J, Wick L, Spitz U, Shabat D. Bioconjug. Chem., 2021, 32: 991.

[9]

Peukert C, Popat Gholap S, Green O, Pinkert L, van den Heuvel J, van Ham M, Shabat D, Brönstrup M. Angew. Chem. Int. Ed., 2022, 61: e202201423.

[10]

Dai Y, Zhang K, Yuan X, Xie X, Zhan Z, Lv Y. Anal. Chem., 2023, 95: 8310.

[11]

Ning Y, Tang J, Liu Y W, Jing J, Sun Y, Zhang J L. Chem. Sci., 2018, 9: 3742.

[12]

Ning Y, Cheng S, Wang J X, Liu Y W, Feng W, Li F, Zhang J L. Chem. Sci., 2019, 10: 4227.

[13]

Shang A, Zhao L, Li Z, Cheng Z, Jin H, Feng Z, Chen Z, Zhang H, Lu P. Chem. Res. Chinese Universities, 2022, 38: 1461.

[14]

Li X, Tan W, Bai X, Li F. Chem. Res. Chinese Universities, 2023, 39: 192.

[15]

Li C, Zhang Y, Wang M, Zhang Y, Chen G, Li L, Wu D, Wang Q. Biomaterials, 2014, 35: 393.

[16]

Yoshida H, Nakao R, Nohta H, Yamaguchi M. Dyes Pigm., 2000, 47: 239.

[17]

Periyasami G, Martelo L, Baleizâo C, Berberan-Santos M N. New J. Chem., 2014, 38: 2258.

[18]

Chen F, Zhang Y, Li T, Peng D, Qi Z, Song J, Deng T, Liu F. Chin. Chem. Lett., 2023, 34: 107496.

[19]

Rink S, Duerkop A, Jacobi von Wangelin A, Seidel M, Baeumner A J. Anal. Chim. Acta, 2021, 1188: 339161.

[20]

Teranishi K. Luminescence, 2007, 22: 147.

[21]

Goto T, Takagi T. Bull. Chem. Soc. Jpn., 1980, 53: 833.

[22]

Toya Y, Kayano T, Sato K, Goto T. Bull. Chem. Soc. Jpn., 1992, 65: 2475.

[23]

Chandross E A. Tetrahedron Lett., 1963, 4: 761.

[24]

Fan W, Li L, Yuan J, Ma X, Jia J, Zhang X. Anal. Chem., 2021, 93: 17043.

[25]

Huang J, Deng Z, Ding C, Jin Y, Wang B, Chen J. Microchem. J., 2022, 181: 107782.

[26]

Wang C, Wu Z, Hao M, Chen B, Zhu J, Cui X, Wang T. Sensor. Actuat. B: Chem., 2023, 388: 133840.

[27]

Chen Z, Su L, Wu Y, Liu J, Wu R, Li Q, Wang C, Liu L, Song J. Proc. Natl. Acad. Sci., 2023, 120: e2205186120.

[28]

Luo T, Huang S, Bai S, Feng B, Huang W, Cheng X, Liu M, Yao H, Zeng W. Food Chem., 2024, 447: 138954.

[29]

Merényi G, Lind J, Eriksen T E. J. Biolumin. Chemilumin., 1990, 5: 53.

[30]

Chen F, Xia X, Ye D, Li T, Huang X, Cai C, Zhu C, Lin C, Deng T, Liu F. Anal. Chem., 2023, 95: 5773.

[31]

Liu C, Wang X, Liu J, Yue Q, Chen S, Lam J W Y, Luo L, Tang B Z. Adv. Mater., 2020, 32: 2004685.

[32]

Shimomura O, Goto T, Hirata Y. B. Chem. Soc. Jpn., 1957, 30: 329.

[33]

Lee Y D, Lim C K, Singh A, Koh J, Kim J, Kwon I C, Kim S. ACS Nano, 2012, 6: 6759.

[34]

Samadi-Maybodi A, Akhoondi R, Javad Chaichi M. J. Fluoresc., 2010, 20: 671.

[35]

Kazemi S Y, Abedirad S M. Spectrochim. Acta A, 2023, 292: 122367.

[36]

Zhang C, Jin J, Liu K, Ma X, Zhang X. Chin. Chem. Lett., 2021, 32: 3931.

[37]

Li L, Lin D, Yang F, Xiao Y, Yang L, Yu S, Jiang C. ACS Appl. Nano Mater., 2021, 4: 3932.

[38]

Schaap A P, Chen T, Handley R S, DeSilva R, Giri B P. Tetrahedron Lett., 1987, 28: 1155.

[39]

Koo J Y, Schuster G B. J. Am. Chem. Soc., 1977, 99: 6107.

[40]

Gnaim S, Shabat D. J. Am. Chem. Soc., 2017, 139: 10002.

[41]

Babin B M, Fernandez-Cuervo G, Sheng J, Green O, Ordonez A A, Turner M L, Keller L J, Jain S K, Shabat D, Bogyo M. ACS Cent. Sci., 2021, 7: 803.

[42]

Das S, Ihssen J, Wick L, Spitz U, Shabat D. Chem. Eur. J., 2020, 26: 3647.

[43]

Gu B, Dong C, Shen R, Qiang J, Wei T, Wang F, Lu S, Chen X. Sens. Actuat. B: Chem., 2019, 301: 127111.

[44]

Gutkin S, Gandhesiri S, Brik A, Shabat D. Bioconjug. Chem., 2021, 32: 2141.

[45]

Gutkin S, Green O, Raviv G, Shabat D, Portnoy O. Bioconjug. Chem., 2020, 31: 2488.

[46]

Roth-Konforti M E, Bauer C R, Shabat D. Angew. Chem. Int. Ed., 2017, 56: 15633.

[47]

Roth-Konforti M, Green O, Hupfeld M, Fieseler L, Heinrich N, Ihssen J, Vorberg R, Wick L, Spitz U, Shabat D. Angew. Chem. Int. Ed., 2019, 58: 10361.

[48]

Shelef O, Gutkin S, Feder D, Ben-Bassat A, Mandelboim M, Haitin Y, Ben-Tal N, Bacharach E, Shabat D. Chem. Sci., 2022, 13: 12348.

[49]

Son S, Won M, Green O, Hananya N, Sharma A, Jeon Y, Kwak J H, Sessler J L, Shabat D, Kim J S. Angew. Chem. Int. Ed., 2019, 58: 1739.

[50]

Zhao C, Cui H, Duan J, Zhang S, Lv J. Anal. Chem., 2018, 90: 2201.

[51]

Hananya N, Eldar Boock A, Bauer C R, Satchi-Fainaro R, Shabat D. J. Am. Chem. Soc., 201, 138: 13438.

[52]

Wei X, Huang J, Zhang C, Xu C, Pu K, Zhang Y. Angew. Chem. Int. Ed., 2023, 62: e202213791.

[53]

Takakura H. Molecules, 2021, 26: 1618.

[54]

Green O, Eilon T, Hananya N, Gutkin S, Bauer C R, Shabat D. ACS Cent. Sci., 2017, 3: 349.

[55]

Gutkin S, Tannous R, Jaber Q, Fridman M, Shabat D. Chem. Sci., 2023, 14: 6953.

[56]

Bronstein I, Edwards B, Voyta J C. J. Biolumin. Chemilumin., 1989, 4: 99.

[57]

Matsumoto M, Akimoto T, Matsumoto Y, Watanabe N. Tetrahedron Lett., 2005, 46: 6075.

[58]

Huang J, Cheng P, Xu C, Liew S S, He S, Zhang Y, Pu K. Angew. Chem. Int. Ed., 2022, 61: e202203235.

[59]

Xu S, Pan W, Chen L, Liu S, Ren T, Liu H, Liu Y, Huan S, Yuan L, Zhang X. Biomaterials, 2023, 293: 121955.

[60]

Scholes G D. Annu. Rev. Phys. Chem., 2003, 54: 57.

[61]

Watanabe N, Kino H, Watanabe S, Ijuin H K, Yamada M, Matsumoto M. Tetrahedron, 2012, 68: 6079.

[62]

Yan Y, Shi P, Song W, Bi S. Theranostics, 2019, 9: 4047.

[63]

Yan Y, Wang X, Hai X, Song W, Ding C, Cao J, Bi S. TrAC Trends Anal. Chem., 2020, 123: 115755.

[64]

Dos Remedios C G, Moens P D J. J. Struct. Biol., 1995, 115: 175.

[65]

Lin W, Yuan L, Cao Z, Feng Y, Song J. Angew. Chem. Int. Ed., 2010, 49: 375.

[66]

Cao D, Zhu L, Liu Z, Lin W. J. Photochem. Photobiol. C: Photochem. Rev., 2020, 44: 100371.

[67]

Han J, Jose J, Mei E, Burgess K. Angew. Chem. Int. Ed., 2007, 46: 1684.

[68]

Ryan L S, Gerberich J, Haris U, Nguyen D, Mason R P, Lippert A R. ACS Sens., 2020, 5: 2925.

[69]

Kagalwala H N, Gerberich J, Smith C J, Mason R P, Lippert A R. Angew. Chem. Int. Ed., 2022, 61: e202115704.

[70]

Wu Y, Sutton G D, Halamicek M D S, Xing X, Bao J, Teets T S. Chem. Sci., 2022, 13: 8804.

[71]

Kagalwala H N, Bueno L, Wanniarachchi H, Unruh D K, Hamal K B, Pavlich C I, Carlson G J, Pinney K G, Mason R P, Lippert A R. Anal. Sens., 2023, 3: e202200085.

[72]

Green O, Gnaim S, Blau R, Eldar-Boock A, Satchi-Fainaro R, Shabat D. J. Am. Chem. Soc., 2017, 139: 13243.

[73]

Liu Q, Sun C, Dai R, Yan C, Zhang Y, Zhu W, Guo Z. Coord. Chem. Rev., 2024, 503: 215652.

[74]

Yang M, Zhang J, Shabat D, Fan J, Peng X. ACS Sens., 2020, 5: 3158.

[75]

Huang J, Jiang Y, Li J, Huang J, Pu K. Angew. Chem. Int. Ed., 2021, 60: 3999.

[76]

Huang J, Zhang C, Wang X, Wei X, Pu K. Angew. Chem. Int. Ed., 2023, 62: e202303982.

[77]

Liu J, Chen Z, Huo H, Chen L, Wu Y, Zhang X, Su L, Li Q, Song J. Chin. J. Chem., 2022, 40: 2400.

[78]

Liu J, Huang J, Wei X, Cheng P, Pu K. Adv. Mater., 2024, 36: 2310605.

[79]

Huang J, Huang J, Cheng P, Jiang Y, Pu K. Adv. Funct. Mater., 2020, 30: 2003628.

[80]

Haris U, Kagalwala H N, Kim Y L, Lippert A R. Acc. Chem. Res., 2021, 54: 2844.

[81]

Yang J, Zhu B, Zhang J, Liang S H, Shen S, Ran C. Angew. Chem. Int. Ed., 2024 e202409896.

[82]

Matsumoto M, Watanabe N, Kasuga N C, Hamada F, Tadokoro K. Tetrahedron Lett., 1997, 38: 2863.

[83]

Li S, Zhang G, He Y, Yang L, Li H, Long C, Cui Y, Wang X. Anal. Chem., 2023, 95: 13191.

[84]

Watanabe N, Takatsuka H, Ijuin H K, Matsumoto M. Tetrahedron, 2020, 76: 131203.

[85]

Shang Q, Li S, He Y, Zhang Y, Fu T, Han S, Huang W, Wang X, Xu J. Anal. Chem., 2024, 96: 2286.

[86]

Hananya N, Reid J P, Green O, Sigman M S, Shabat D. Chem. Sci., 2019, 10: 1380.

[87]

Tannous R, Shelef O, Gutkin S, David M, Leirikh T, Ge L, Jaber Q, Zhou Q, Ma P, Fridman M, Spitz U, Houk K N, Shabat D. ACS Cent. Sci., 2024, 10: 28.

[88]

Zhan Z, Dai Y, Li Q, Lv Y. TrAC Trends Anal. Chem., 2021, 134: 116129.

[89]

Wang B, Chen Z, Cen X, Liang Y, Tan L, Liang E, Zheng L, Zheng Y, Zhan Z, Cheng K. Chem. Sci., 2022, 13: 2324.

[90]

Checa J, Aran J M. J. Inflamm. Res., 2020, 13: 1057.

[91]

Li B, Kim Y L, Lippert A R. Antioxid. Redox Signal., 2022, 36: 337.

[92]

Sies H, Belousov V V, Chandel N S, Davies M J, Jones D P, Mann G E, Murphy M P, Yamamoto M, Winterbourn C. Nat. Rev. Mol. Cell Biol, 2022, 23: 499.

[93]

Cheng P, Miao Q, Li J, Huang J, Xie C, Pu K. J. Am. Chem. Soc., 2019, 141: 10581.

[94]

Nemes R, Koltai E, Taylor A W, Suzuki K, Gyori F, Radak Z. Antioxidants, 2018, 7: 85.

[95]

Yang Y, Wang S, Lu L, Zhang Q, Yu P, Fan Y, Zhang F. Angew. Chem. Int. Ed., 2020, 59: 18380.

[96]

Zhang S, Yuan H, Sun S, Qin C, Qiu Q, Feng Y, Liu Y, Li Y, Xu L, Ying Y, Qi J, Wang Y. Adv. Sci., 2023, 10: 2207651.

[97]

Robinson P K. Essays Biochem., 2015, 59: 1.

[98]

Shelef O, Gutkin S, Feder D, Ben-Bassat A, Mandelboim M, Haitin Y, Ben-Tal N, Bacharach E, Shabat D. Chem. Sci., 2022, 13: 123. 48

[99]

Atia A, Abdullah A. Res. J. Pharm. Biol. Chem. Sci., 2014, 5: 533.

[100]

Lima E, Reis L V. Molecules, 2023, 28: 5092.

[101]

Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J. Biomed. Pharmacother., 2018, 106: 1098.

[102]

Ning Y, Jin G Q, Zhang J L. Acc. Chem. Res., 2019, 52: 2620.

[103]

Yanovsky R L, Bartenstein D W, Rogers G S, Isakoff S J, Chen S T. Photodermatol. Photoimmunol. Photomed., 2019, 35: 295.

[104]

Kuang S, Zhu B, Zhang J, Yang F, Wu B, Ding W, Yang L, Shen S, Liang S H, Mondal P, Kumar M, Tanzi R E, Zhang C, Chao H, Ran C. Angew. Chem. Int. Ed., 2023, 62: e202312519.

[105]

Ran C, Pu K. Angew. Chem. Int. Ed., 2024, 63: e202314468.

[106]

Gao J, Chen Z, Li X, Yang M, Lv J, Li H, Yuan Z. Int. J. Mol. Sci., 2022, 23: 12556.

[107]

Vitorino R, Barros A S, Guedes S, Caixeta D C, Sabino-Silva R. Photodiagnosis Photodyn. Ther., 2023, 42: 103633.

[108]

Lou J, Tang X, Zhang H, Guan W, Lu C. Angew. Chem. Int. Ed., 2021, 60: 13029.

[109]

Baptista M S, Cadet J, Di Mascio P, Ghogare A A, Greer A, Hamblin M R, Lorente C, Nunez S C, Ribeiro M S, Thomas A H, Vignoni M, Yoshimura T M. Photochem. Photobiol., 2017, 93: 912.

[110]

Digby E M, Tung M T, Kagalwala H N, Ryan L S, Lippert A R, Beharry A A. ACS Chem. Biol., 2022, 17: 1082.

[111]

Huang C, Zhou W, Wu R, Guan W, Ye N. Nanomaterials, 2023, 13: 1726.

[112]

Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem. Rev., 2015, 115: 11718.

[113]

Chen C, Zhang X, Gao Z, Feng G, Ding D. Nat. Protoc., 2024, 19: 2408.

[114]

Zhu Z, Tang Z, Phillips J A, Yang R, Wang H, Tan W. J. Am. Chem. Soc., 2008, 130: 10856.

[115]

Coleman J E. Annu. Rev. Biophys., 1992, 21: 441.

[116]

Harris H. Clin. Chim. Acta, 1990, 186: 133.

[117]

Adam W, Bronstein I, Edwards B, Engel T, Reinhardt D, Schneider F W, Trofimov A V, Vasil’ev R F. J. Am. Chem. Soc., 199, 118: 10400.

[118]

Schaap A P, Akhavan H, Romano L J. Clin. Chem., 1989, 35: 1863.

[119]

Fan N, Li P, Wu C, Wang X, Zhou Y, Tang B. ACS Appl. Bio Mater., 2021, 4: 1740.

[120]

Ma Y, Li X, Li A, Yang P, Zhang C, Tang B. Angew. Chem. Int. Ed., 2017, 56: 13752.

[121]

Lu C, Zhang C, Wang P, Zhao Y, Yang Y, Wang Y, Yuan H, Qu S, Zhang X, Song G, Pu K. Chem., 2020, 6: 2314.

AI Summary AI Mindmap
PDF

227

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/