Waterproof Perovskite Quantum Dots for In-vivo Photoluminescence Bioimaging

Ziyue Jiao , Xinli Wang , Jie Gao , Xiao Huang , Yi Wang

Chemical Research in Chinese Universities ›› : 1 -6.

PDF
Chemical Research in Chinese Universities ›› : 1 -6. DOI: 10.1007/s40242-024-4152-z
Article

Waterproof Perovskite Quantum Dots for In-vivo Photoluminescence Bioimaging

Author information +
History +
PDF

Abstract

Perovskite quantum dots (PQDs) have demonstrated great promise in bioimaging applications owing to their outstanding photophysical properties. Nonetheless, their practicality is seriously limited by the instability of PQDs against moisture. Here we develop a post-synthetic ligand exchange strategy to construct silica-coated PQD (PQD@SiO2) nanocrystals, which results in the simultaneous improvement of photoluminescence efficiency and moisture stability. More importantly, compared to the classical in-situ ligand exchange method of fabricating PQD@SiO2, the issues of chemical etching and resultant photoluminescence degradation are judiciously overcome. Employing the proposed PQD@SiO2, we showcase their robust usefulness in labeling chlorella, paving the way for PQD-based in-vivo photoluminescence bioimaging methodology.

Keywords

Perovskite / Quantum dot / Photoluminescence / Stability / Bioimaging

Cite this article

Download citation ▾
Ziyue Jiao, Xinli Wang, Jie Gao, Xiao Huang, Yi Wang. Waterproof Perovskite Quantum Dots for In-vivo Photoluminescence Bioimaging. Chemical Research in Chinese Universities 1-6 DOI:10.1007/s40242-024-4152-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dong Y, Gu Y, Zou Y, Song J, Xu L, Li J, Xue J, Li X, Zeng H. Small, 201, 12: 5622.

[2]

Tian W, Zhou H, Li L. Small, 2017, 13: 1702107.

[3]

Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I. Nature, 2015, 517: 476.

[4]

Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Science, 2017, 356: 1376.

[5]

Fu Y, Zhu H, Schrader A W, Liang D, Ding Q, Joshi P, Hwang L, Zhu X Y, Jin S. Nano Lett., 201, 16: 1000.

[6]

Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson M V, Trinh M T, Jin S, Zhu X Y. Nat. Mater., 2015, 14: 636.

[7]

Zhou H, Song Z, Grice C R, Chen C, Zhang J, Zhu Y, Liu R, Wang H, Yan Y. Nano Energy, 2018, 53: 880.

[8]

Zhang X, Xu B, Zhang J, Gao Y, Zheng Y, Wang K, Sun X W. Adv. Funct. Mater., 201, 26: 4595.

[9]

Chiba T, Hoshi K, Pu Y J, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J. ACS Appl. Mater. Interfaces, 2017, 9: 18054.

[10]

Wu C, Wu T, Yang Y, McLeod J A, Wang Y, Zou Y, Zhai T, Li J, Ban M, Song T, Gao X, Duhm S, Sirringhaus H, Sun B. ACS Nano, 2019, 13: 1645.

[11]

Pietryga J M, Park Y S, Lim J, Fidler A F, Bae W K, Brovelli S, Klimov V I. Chem. Ret., 201, 116: 10513.

[12]

Shu Y F, Lin X, Qin H Y, Hu Z, Jin Y Z, Peng X G. Angew. Chem. Int. Ed., 2020, 59: 22312.

[13]

Efros A L, Brus L E. ACS Nano, 2021, 15: 6192.

[14]

Panfil Y E, Oded M, Banin U. Angew. Chem. Int. Ed., 2018, 57: 4274.

[15]

Arquer F P G D, Talapin D V, Klimov V I, Arakawa Y, Bayer M, Sargent E H. Science, 2021, 373: 8541.

[16]

Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Lett., 2015, 15: 3692.

[17]

Liu L, Najar A, Wang K, Du M, Liu S. Adv. Sci., 2022, 9: 2104577.

[18]

Lian H, Li Y, Saravanakumar S, Jiang H, Li Z, Wang J, Xu L, Zhao W, Han G. Coord. Chem. Rev., 2022, 452: 214313.

[19]

Sanjayan C G, Jyothi M S, Balakrishna R G. J. Mater. Chem. C, 2022, 10: 6935.

[20]

Maes J, Balcaen L, Drijvers E, Zhao Q, De Roo J, Vantomme A, Vanhaecke F, Geiregat P, Hens Z. J. Phys. Chem. Lett., 2018, 9: 3093.

[21]

Wang Y, Guo S, Luo H, Zhou C, Lin H, Ma X, Hu Q, Du M, Ma B, Yang W, X. J. Am. Chem. Soc., 2020, 142: 16001.

[22]

Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Lett., 2015, 15: 3692.

[23]

Vicidomini G, Bianchini P, Diaspro A. Nat. Methods, 2018, 15: 173.

[24]

Qiao B, Song P, Cao J, Zhao S, Shen Z, Di G, Liang Z, Xu Z, Song D, Xu X. Nanotechnology, 2017, 28: 445602.

[25]

Xuan T, Yang X, Lou S, Huang J, Liu Y, Yu J, Li H, Wong K-L, Wang C, Wang J. Nanoscale, 2017, 9: 15286.

[26]

Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant J R, Haque S A. Energy Environ. Sci., 201, 9: 1655.

[27]

Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A. Nat. Commun., 2017, 8: 15218.

[28]

Ma X X, Li Z S. Appl. Surf. Sci., 2018, 428: 140.

[29]

Fiuza-Maneiro N, Sun K, López-Fernández I, Gómez-Graña S, Müller-Buschbaum P, Polavarapu L. ACS Energy Lett., 2023, 8: 1152.

[30]

Liu C, Sun J S, Tan W L, Lu J F, Gengenbach T R, McNeill C R, Ge Z Y, Cheng Y B, Bach U. Nano Lett., 2020, 20: 1240.

[31]

Xuan T, Huang J, Liu H, Lou S, Cao L, Gan W, Liu R S, Wang J. Chem. Mater., 2019, 31: 1042.

[32]

Huang S Q, Li Z C, Kong L, Zhu N W, Shan A D, Li L. J. Am. Chem. Soc., 201, 138: 5749.

[33]

Liang X, Chen M, Wang Q, Guo S, Yang H. Angew. Chem. Int. Ed., 2019, 58: 2799.

[34]

Sun C, Zhang Y, Ruan C, Yin C, Wang X, Wang Y, Yu W W. Adv. Mater., 201, 28: 10088.

[35]

Guan H L, Zhao S Y, Wang H X, Yan D D, Wang M, Zang Z G. Nano Energy, 2020, 67: 104.

AI Summary AI Mindmap
PDF

228

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/