Waterproof Perovskite Quantum Dots for In-vivo Photoluminescence Bioimaging

Ziyue Jiao, Xinli Wang, Jie Gao, Xiao Huang, Yi Wang

Chemical Research in Chinese Universities ›› , Vol. 40 ›› Issue (5) : 901-906. DOI: 10.1007/s40242-024-4152-z
Article

Waterproof Perovskite Quantum Dots for In-vivo Photoluminescence Bioimaging

Author information +
History +

Abstract

Perovskite quantum dots (PQDs) have demonstrated great promise in bioimaging applications owing to their outstanding photophysical properties. Nonetheless, their practicality is seriously limited by the instability of PQDs against moisture. Here we develop a post-synthetic ligand exchange strategy to construct silica-coated PQD (PQD@SiO2) nanocrystals, which results in the simultaneous improvement of photoluminescence efficiency and moisture stability. More importantly, compared to the classical in-situ ligand exchange method of fabricating PQD@SiO2, the issues of chemical etching and resultant photoluminescence degradation are judiciously overcome. Employing the proposed PQD@SiO2, we showcase their robust usefulness in labeling chlorella, paving the way for PQD-based in-vivo photoluminescence bioimaging methodology.

Cite this article

Download citation ▾
Ziyue Jiao, Xinli Wang, Jie Gao, Xiao Huang, Yi Wang. Waterproof Perovskite Quantum Dots for In-vivo Photoluminescence Bioimaging. Chemical Research in Chinese Universities, , 40(5): 901‒906 https://doi.org/10.1007/s40242-024-4152-z

References

[[1]]
Dong Y, Gu Y, Zou Y, Song J, Xu L, Li J, Xue J, Li X, Zeng H Small, 2016, 12: 5622.
CrossRef Google scholar
[[2]]
Tian W, Zhou H, Li L Small, 2017, 13: 1702107.
CrossRef Google scholar
[[3]]
Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I Nature, 2015, 517: 476.
CrossRef Google scholar
[[4]]
Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I Science, 2017, 356: 1376.
CrossRef Google scholar
[[5]]
Fu Y, Zhu H, Schrader A W, Liang D, Ding Q, Joshi P, Hwang L, Zhu X Y, Jin S Nano Lett., 2016, 16: 1000.
CrossRef Google scholar
[[6]]
Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson M V, Trinh M T, Jin S, Zhu X Y Nat. Mater., 2015, 14: 636.
CrossRef Google scholar
[[7]]
Zhou H, Song Z, Grice C R, Chen C, Zhang J, Zhu Y, Liu R, Wang H, Yan Y Nano Energy, 2018, 53: 880.
CrossRef Google scholar
[[8]]
Zhang X, Xu B, Zhang J, Gao Y, Zheng Y, Wang K, Sun X W Adv. Funct. Mater., 2016, 26: 4595.
CrossRef Google scholar
[[9]]
Chiba T, Hoshi K, Pu Y J, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J ACS Appl. Mater. Interfaces, 2017, 9: 18054.
CrossRef Google scholar
[[10]]
Wu C, Wu T, Yang Y, McLeod J A, Wang Y, Zou Y, Zhai T, Li J, Ban M, Song T, Gao X, Duhm S, Sirringhaus H, Sun B ACS Nano, 2019, 13: 1645
[[11]]
Pietryga J M, Park Y S, Lim J, Fidler A F, Bae W K, Brovelli S, Klimov V I Chem. Ret., 2016, 116: 10513.
CrossRef Google scholar
[[12]]
Shu Y F, Lin X, Qin H Y, Hu Z, Jin Y Z, Peng X G Angew. Chem. Int. Ed., 2020, 59: 22312.
CrossRef Google scholar
[[13]]
Efros A L, Brus L E ACS Nano, 2021, 15: 6192.
CrossRef Google scholar
[[14]]
Panfil Y E, Oded M, Banin U Angew. Chem. Int. Ed., 2018, 57: 4274.
CrossRef Google scholar
[[15]]
Arquer F P G D, Talapin D V, Klimov V I, Arakawa Y, Bayer M, Sargent E H Science, 2021, 373: 8541.
CrossRef Google scholar
[[16]]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V Nano Lett., 2015, 15: 3692.
CrossRef Google scholar
[[17]]
Liu L, Najar A, Wang K, Du M, Liu S Adv. Sci., 2022, 9: 2104577.
CrossRef Google scholar
[[18]]
Lian H, Li Y, Saravanakumar S, Jiang H, Li Z, Wang J, Xu L, Zhao W, Han G Coord. Chem. Rev., 2022, 452: 214313.
CrossRef Google scholar
[[19]]
Sanjayan C G, Jyothi M S, Balakrishna R G J. Mater. Chem. C, 2022, 10: 6935.
CrossRef Google scholar
[[20]]
Maes J, Balcaen L, Drijvers E, Zhao Q, De Roo J, Vantomme A, Vanhaecke F, Geiregat P, Hens Z J. Phys. Chem. Lett., 2018, 9: 3093.
CrossRef Google scholar
[[21]]
Wang Y, Guo S, Luo H, Zhou C, Lin H, Ma X, Hu Q, Du M, Ma B, Yang W, X J. Am. Chem. Soc., 2020, 142: 16001.
CrossRef Google scholar
[[22]]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V Nano Lett., 2015, 15: 3692.
CrossRef Google scholar
[[23]]
Vicidomini G, Bianchini P, Diaspro A Nat. Methods, 2018, 15: 173.
CrossRef Google scholar
[[24]]
Qiao B, Song P, Cao J, Zhao S, Shen Z, Di G, Liang Z, Xu Z, Song D, Xu X Nanotechnology, 2017, 28: 445602.
CrossRef Google scholar
[[25]]
Xuan T, Yang X, Lou S, Huang J, Liu Y, Yu J, Li H, Wong K-L, Wang C, Wang J Nanoscale, 2017, 9: 15286.
CrossRef Google scholar
[[26]]
Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant J R, Haque S A Energy Environ. Sci., 2016, 9: 1655.
CrossRef Google scholar
[[27]]
Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A Nat. Commun., 2017, 8: 15218.
CrossRef Google scholar
[[28]]
Ma X X, Li Z S Appl. Surf. Sci., 2018, 428: 140.
CrossRef Google scholar
[[29]]
Fiuza-Maneiro N, Sun K, López-Fernández I, Gómez-Graña S, Müller-Buschbaum P, Polavarapu L ACS Energy Lett., 2023, 8: 1152.
CrossRef Google scholar
[[30]]
Liu C, Sun J S, Tan W L, Lu J F, Gengenbach T R, McNeill C R, Ge Z Y, Cheng Y B, Bach U Nano Lett., 2020, 20: 1240.
CrossRef Google scholar
[[31]]
Xuan T, Huang J, Liu H, Lou S, Cao L, Gan W, Liu R S, Wang J Chem. Mater., 2019, 31: 1042.
CrossRef Google scholar
[[32]]
Huang S Q, Li Z C, Kong L, Zhu N W, Shan A D, Li L J. Am. Chem. Soc., 2016, 138: 5749.
CrossRef Google scholar
[[33]]
Liang X, Chen M, Wang Q, Guo S, Yang H Angew. Chem. Int. Ed., 2019, 58: 2799.
CrossRef Google scholar
[[34]]
Sun C, Zhang Y, Ruan C, Yin C, Wang X, Wang Y, Yu W W Adv. Mater., 2016, 28: 10088.
CrossRef Google scholar
[[35]]
Guan H L, Zhao S Y, Wang H X, Yan D D, Wang M, Zang Z G Nano Energy, 2020, 67: 104

Accesses

Citations

Detail

Sections
Recommended

/