In silico Exploration of Inhibition Mechanism of Lianhua Qingwen Formula (LQF) Interaction on SARS-CoV-2 Mpro

Xiaolong Xue, Xin Wang, Chenghao Ye, Meina Gao, Peng Li, Kunqian Yu, Guanghui Chen

Chemical Research in Chinese Universities ›› 2024

Chemical Research in Chinese Universities All Journals
Chemical Research in Chinese Universities ›› 2024 DOI: 10.1007/s40242-024-4150-1
Article

In silico Exploration of Inhibition Mechanism of Lianhua Qingwen Formula (LQF) Interaction on SARS-CoV-2 Mpro

Author information +
History +

Abstract

It is well known that the severe epidemic respiratory disease COVID-19 was caused by the novel coronavirus SARS-CoV-2. Lianhua Qingwen Formula (LQF), as a traditional Chinese medicine (TCM) formula, exerts anti-coronavirus activity by suppressing viral replication and activating anti-inflammatory effects. In this work, the unknown molecular inhibition mechanism of LQF ingredients on the main protease (Mpro) of SARS-CoV-2 was investigated. From the screening of pharmacophore model, docking, molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations, it is found that Isoliquiritin apioside, Liquiritin apioside, Forsythoside E, Rutin, and Isoliquiritin possess much larger binding free energies than reference X77. These five hit molecules are characterized by multi-hydroxyl groups, which facilitate the formation of hydrogen bonds with polar amino acid residues at S1’ subsite and rationalize their primary binding to Mpro with electrostatic rather than usual van der Waals (vdW) interaction. In addition, the Isoliquiritin apioside, Liquiritin apioside, and Rutin were also identified as potential inhibitors on SARS-CoV Mpro, possessing much larger binding free energies with large electrostatic interaction than that of reference ENB. The present study can not only enrich the scaffolds of Mpro of SARS-CoV family inhibitors, but also provide an idea for the new drug development.

Keywords

SARS-CoV-2 Mpro inhibitor / Lianhua Qingwen Formula (LQF) / Virtual screening / S1′ subsite / SARS-CoV Mpro inhibitor

Cite this article

Download citation ▾
Xiaolong Xue, Xin Wang, Chenghao Ye, Meina Gao, Peng Li, Kunqian Yu, Guanghui Chen. In silico Exploration of Inhibition Mechanism of Lianhua Qingwen Formula (LQF) Interaction on SARS-CoV-2 Mpro. Chemical Research in Chinese Universities, 2024 https://doi.org/10.1007/s40242-024-4150-1
This is a preview of subscription content, contact us for subscripton.

References

[1]
Bekheit M S, Panda S S, Girgis A S. Eur. J. Med. Chem., 2023, 252: 115292.
CrossRef Google scholar
[2]
Huang C, Wang Y M, Li X W, Ren L L, Zhao J P, Hu Y, Zhang L, Fan G H, Xu J Y, Gu X Y, Cheng Z S, Yu T, Xia J A, Wei Y, Wu W J, Xie X L, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J G, Wang G F, Jiang R M, Gao Z C, Jin Q, Wang J W, Cao B. The lancet, 2020, 395: 497.
CrossRef Google scholar
[3]
Sohrabi C, Alsafi Z, O’neill N, Khan M, Kerwan A, Al-jabir A, Iosifidis C, Agha R. Int. J. Surg., 2020, 76: 71.
CrossRef Google scholar
[4]
Xiang R, Yu Z S, Wang Y, Wang L L, Huo S S, Li Y B, Liang R Y, Hao Q H, Ying T L, Gao Y N, Yu F, Jiang S B. Acta Pharm. Sin. B, 2022, 12: 1591.
CrossRef Google scholar
[5]
Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K. Eur. Rev. Med. Pharmacol. Sci., 2020, 24: 2006.
[6]
Qiao J X, Li Y S, Zeng R, Liu F L, Luo R H, Huang C, Wang Y F, Zhang J, Quan B X, Shen C J, Mao X, Liu X L, Sun W N, Yang Wei, Ni X C, Wang K, Xu L, Duan Z L, Zou Q C, Zhang H L, Qu W, Long Y H P, Li M H, Yang R C, Liu X L, You J, Zhou Y L, Yao R, Li W P, Liu J M, Chen P, Liu Y, Lin G F, Yang X, Zou J, Li L L, Hu Y G, Lu G W, Li W M, Wei Y Q, Zheng Y T, Lei J, Yang S Y. Science, 2021, 371: 1374.
CrossRef Google scholar
[7]
Ibrahim M A A, Abdelrahman A H M, Mohamed T A, Atia M A M, Al-Hammady M A M, Abdeljawaad K A A, Elkady E M, Moustafa M F, Alrumaihi F, Allemailem K S, El-Seedi H R, Paré P W, Efferth T, Hegazy M E F. Molecules, 2021, 26: 2082.
CrossRef Google scholar
[8]
Fu Z Y, Huang B, Tang J L, Liu S Y, Liu M, Ye Y X, Liu Z H, Xiong Y X, Zhu W N, Cao D, Li J H, Niu X G, Zhou H, Zhao Y J, Zhang G L, Huang H. Nat. Commun., 2021, 12: 488.
CrossRef Google scholar
[9]
Zhang G N, Zhao J Y, Li Q J, Wang M H, Zhu M, Wang J X, Cen S, Wang Y C. Eur. J. Med. Chem., 2021, 223: 113622.
CrossRef Google scholar
[10]
Mondal S, Chen Y Z, Lockbaum G J, Sen S, Chaudhuri S, Reyes A C, Lee J M, Kaur A N, Sultana N, Cameron M D, Shaffer S A, Schiffer C A, Fitzgerald K A, Thompson P R. J. Am. Chem. Soc., 2022, 144: 21035.
CrossRef Google scholar
[11]
Clyde A, Galanie S, Kneller D W, Ma H, Babuji Y, Blaiszik B, Brace A, Brettin T, Chard K, Chard R, Coates L, Foster L, Hauner D, Kertesz V, Kumar N, Lee H, Li Z Z, Merzky A, Schmidt J G, Tan L, Titov M, Trifan A, Turilli M, Dam H V, Chennubhotla S C, Jha S, Kovalevsky A, Ramanathan A, Head M S, Stevens R. J. Chem. Inf. Model., 2021, 62: 116.
CrossRef Google scholar
[12]
Gao S H, Sylvester K, Song L T, Claff T, Jing L L, Woodson M, Weiße R H, Cheng Y S, Schäkel L, Petry M, Gütschow M, Schiedel A C, Sträter N, Kang D W, Xu S J, Toth K, Tavis J, Tollefson A E, Müller C E, Liu X Y, Zhan P. J. Med. Chem., 2022, 65: 13343.
CrossRef Google scholar
[13]
Duan Y K, Zhou H, Liu X, Iketani S, Lin M M, Zhang X Y, Bian Q C, Wang H F, Sun H R, Hong S J, Culbertson B, Mohri H, Luck M I, Zhu Y, Liu X C, Lu Y C, Yang X N, Yang K L, Sabo Y, Chavez A, Goff S P, Rao Z H, Ho D D, Yang H T. Nature, 2023, 622: 376.
CrossRef Google scholar
[14]
Zhao Y, Zhu Y, Liu X, Jin Z M, Duan Y K, Zhang Q, Wu C Y, Feng L, Du X Y, Zhao J Y, Shao M L, Zhang B, Yang X N, Wu L J, Ji X Y, Guddat L W, Yang K L, Rao Z H, Yang H T. P. Natl. Acad. Sci. USA, 2022, 119: e2117142119.
CrossRef Google scholar
[15]
Lata S, Akif M. Proteins, 2021, 89: 1216.
CrossRef Google scholar
[16]
Song L T, Gao S H, Ye B, Yang M L, Cheng Y S, Kang D W, Yi F, Sun J P, Menéndez-Arias L, Neyts J, Liu X Y, Zhan P. Acta Pharm. Sin. B, 2023, 1: 87.
[17]
Pang X J, Xu W, Liu Y, Li H, Chen L X. Eur. J. Med. Chem., 2023, 257: 115491.
CrossRef Google scholar
[18]
Banerjee R, Perera L. Drug Discov. Today, 2021, 26: 804.
CrossRef Google scholar
[19]
Kovalevsky A, Aniana A, Coates L, Bonnesen P V, Nashed N T, Louis J M. J. Biol. Chem., 2023, 299: 104886.
CrossRef Google scholar
[20]
Menéndez C A, Byléhn F, Perez-Lemus G R, Alvarado W, Pablo J J D. Sci. Adv., 2020, 6: eabd0345.
CrossRef Google scholar
[21]
Mesecar A. D., Structure of COVlD-19 Main Protease Bound to Potent Broad-spectrum Non-covalent Inhibitor X77, PDB Doi: https://doi.org/10.2210/pdb6W63/pdb.
[22]
Zhang K J, Wang T Y, Li M T, Liu M, Tang H, Wang L, Ye K, Yang J M, Jiang S, Xiao Y B, Xie Y H, Lu M L, Zhang X Y. Eur. J. Med. Chem., 2023, 257: 115487.
CrossRef Google scholar
[23]
Yang M, Lin L, Scartelli C, Chen D Y, Patel A, Bekendam R, Sun L J, Saeed M, Flaumenhaft R. Blood, 2021, 138: 3144.
CrossRef Google scholar
[24]
Pundir H, Joshi T, Joshi T, Sharma P, Mathpal S, Chandra S, Tamta S. Mol. Divers., 2021, 25: 1731.
CrossRef Google scholar
[25]
Tang G Y, Li S, Zhang C, Chen H Y, Wang N, Feng Y B. Acta Pharm. Sin. B, 2021, 11: 2749.
CrossRef Google scholar
[26]
Lin L L, Yan H, Chen J B, Xie H H, Peng L X, Xie T, Zhao X, Wang S C, Shan J. J. Chin. Med.-UK, 2019, 14: 1.
CrossRef Google scholar
[27]
Anand K, Ziebuhr J, Wadhwani P, Mesters J R, Hilgenfeld R. Science, 2003, 300: 1763.
CrossRef Google scholar
[28]
Yu H, Jia W N, Liu J P, Zhu Y, Wang C H. Tianjin Journal of Traditional Chinese Medicine, 201, 33: 756.
[29]
Atanasov A G, Zotchev S B, Dirsch V M, Supuran C T. Nat. Rev. Drug Discov., 2021, 20: 200.
CrossRef Google scholar
[30]
Newman D J, Cragg G M. J. Nat. Prod., 2020, 83: 770.
CrossRef Google scholar
[31]
Li Y, Zhang L, Wang W, Liu Y, Sun D J, Li H, Chen L X. Bioorg. Chem., 2022, 128: 106106.
CrossRef Google scholar
[32]
Li R F, Hou Y L, Huang J C, Pan W Q, Ma Q H, Shi Y X, Li C F, Zhao J, Jia Z H, Jiang H M, Zheng K, Huang S X, Dai J, Li X B, Hou X T, Wang L, Zhong N S, Yang Z F. Pharmacol. Res., 2020, 156: 104761.
CrossRef Google scholar
[33]
Liu B, Li L, Liu L, Ye M, Zhang W, Zhou X D, Li Q. Asian Pac. J. Trop. Med., 2023, 16: 418.
CrossRef Google scholar
[34]
Prompetchara E, Ketloy C, Palaga T. Asian Pac. J. Allergy., 2020, 38: 1.
[35]
Ding Y W, Zeng L J, Li R F, Chen Q Y, Zhou B X, Chen Q L, Cheng P L, Wang Y T, Zheng J P, Yang Z F, Zhang F X. BMC Complem. Altern. M., 2017, 17: 1.
CrossRef Google scholar
[36]
Li L C, Zhang Z H, Zhou W C, Chen J, Jin H Q, Fang H M, Chen Q, Jin Y C, Qu J, Kan L D. Biomed. Pharmacother., 2020, 130: 110641.
CrossRef Google scholar
[37]
Zhao T Y, Cui X L, Wang Y R, Zhang M, Yue F L, He K, Chen L, Li J. Aging-US, 2021, 13: 23913.
CrossRef Google scholar
[38]
Li L W, Liu S T, Wang B, Liu F, Xu S, Li P R, Chen Y. Int. J. Mol. Sci., 2023, 24: 13953.
CrossRef Google scholar
[39]
Walters W P, Wang R. J. Chem. Inf. Model., 2019, 59: 3603.
CrossRef Google scholar
[40]
Wang X, Ye C H, Li E M, Lin W Q, Chen G H. J. Cell. Biochem., 2023, 124: 221.
CrossRef Google scholar
[41]
Huang Q, Liu X, Zhang P G, Wu Z, Zhao Z L. Chem. Res. Chinese Universities, 2022, 38: 928.
CrossRef Google scholar
[42]
Yu S F, Huang W F, Zhang H, Gou Y F, Zhang B T, Zhang G, Lei J P. Eur. J. Med. Chem., 2024, 271: 116414.
CrossRef Google scholar
[43]
Beroza P, Crawford J J, Ganichkin O, Gendelev L, Harris S F, Klein R, Miu A, Steinbacher S, Klingler F M, Lemmen C. Nat. Commun., 2022, 13: 6447.
CrossRef Google scholar
[44]
Pillai U J, Cherian L, Taunk K, Iype E, Dutta M. Int. J. Biol. Macromol., 2024, 261: 129655.
CrossRef Google scholar
[45]
Adem S, Eyupoglu V, Ibrahim I M, Sarfraz L, Rasul A, Ali M, Elfiky A A. Comput. Biol. Med., 2022, 145: 105452.
CrossRef Google scholar
[46]
Beni N R, Elyasi-Ebli P, Gharaghani S, Seyedarabi A. PLoS One, 2023, 18: e0295014.
CrossRef Google scholar
[47]
Kurogi Y, Guner O F. Curr. Med. Chem., 2001, 8: 1035.
CrossRef Google scholar
[48]
Zhao W, Hevener K E, White S W, Lee R E, Boyett J M. BMC Bioinformatics, 2009, 10: 1.
CrossRef Google scholar
[49]
Verbakel J Y, Steyerberg E W, Uno H, Cock B D, Wynants L, Collins G S, Calster B V. J. Clin. Epidemiology, 2020, 126: 207.
CrossRef Google scholar
[50]
Gillet B, Ianotto J C, Mingant F, Didier R, Gilard M, Ugo V, Lippert E, Galinat H. Thromb. Res., 201, 142: 26.
CrossRef Google scholar
[51]
Guex N, Peitsch M C. Electrophoresis, 1997, 18: 2714.
CrossRef Google scholar
[52]
Trott O, Olson A J. J. Comput. Chem., 2010, 31: 455.
CrossRef Google scholar
[53]
Friesner R A, Murphy R B, Repasky M P, Frye L L, Greenwood J R, Halgren T A, Sanschagrin P C, Mainz D T. J. Med. Chem., 200, 49: 6177.
CrossRef Google scholar
[54]
Offutt T L, Swift R V, Amaro R E. J. Chem. Inf. Model., 201, 56: 1923.
CrossRef Google scholar
[55]
Özpinar G A, Peukert W, Clark T. J. Mol. Model., 2010, 16: 1427.
CrossRef Google scholar
[56]
Sousa da Silva A W, Vranken W F. BMC Research Notes, 2012, 5: 1.
CrossRef Google scholar
[57]
Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J L, Dror R O, Shaw D E. Proteins., 2010, 78: 1950.
CrossRef Google scholar
[58]
Lindahl E, Hess B, Van Der Spoel D. J. Mol. Model., 2001, 7: 306.
CrossRef Google scholar
[59]
Valdés-Tresanco M S, Valdés-Tresanco M E, Valiente P A, Moreno E. J. Chem. Theory Comput., 2021, 17: 6281.
CrossRef Google scholar
[60]
Parker J L, Deme J C, Kolokouris D, Kuteyi G, Biggin P C, Lea S M, Newstead S. Nat. Commun., 2021, 12: 7147.
CrossRef Google scholar
[61]
Ramadoss V, Dehez F, Chipot C. J. Chem. Inf. Model., 201, 56: 1122.
CrossRef Google scholar
[62]
Gaillard T. J. Chem. Inf. Model., 2018, 58: 1697.
CrossRef Google scholar
[63]
Tumskiy R S, Tumskaia A V, Klochkova I N, Richardson R J. Comput. Biol. Med., 2023, 153: 106449.
CrossRef Google scholar
[64]
Gentile D, Patamia V, Scala A, Sciortino M T, Piperno A, Rescifina A. Mar. Drugs, 2020, 18: 225.
CrossRef Google scholar
[65]
Luo S, Huang K F, Zhao X Y, Cong Y L, Zhang J Z H, Duan L L. Nanoscale, 2021, 13: 8313.
CrossRef Google scholar
[66]
Liang D S, Gao J, Cheng Y H, Wei C, Huai Z, Ji M J. Bioorg. Med. Chem. Lett., 2011, 21: 6630.
CrossRef Google scholar
[67]
Rudrapal M, Celik I, Chinnam S, Ansari M A, Khan J, Alghamdi S, Almehmadi M, Zothantluanga J H, Khairnar S J. Saudi J. Biol. Sci., 2022, 29: 3456.
CrossRef Google scholar
[68]
Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Comput. Struct. Biotec., 2022, 20: 1306.
CrossRef Google scholar
[69]
Ibrahim M A A, Mohamed E A R, Abdelrahman A H M, Allemailem K S, Moustafa M F, Shawky A M, Mahzari A, Hakami A R, Abdeljawaad K A A, Atia M A M. J. Mol. Graph. Model., 2021, 105: 107904.
CrossRef Google scholar
[70]
Sinha S K, Prasad S K, Islam M A, Chaudhary S K, Singh S, Shakya A. Comb. Chem. High. T. Scr., 2021, 24: 591.
[71]
Rizzuti B, Grande F, Conforti F, Jimenez-Alesanco A, Ceballos-Laita L, Ortega-Alarcon D, Vega S, Reyburn H T, Abian O, Velazquez-Campoy A. Biomedicines, 2021, 9: 375.
CrossRef Google scholar
[72]
Ferdous N, Reza M N, Hossain M U, Mahmud S, Napis S, Chowdhury K, Mohiuddin A K M. PLoS One, 2023, 18: e0287179.
CrossRef Google scholar
[73]
Dai L, Feng Z Q, Zha R L, Cheng K G, Wen X A, Sun H B, Yuan H L. J. Chem. Inf. Model., 2020, 60: 1717.
CrossRef Google scholar
[74]
Gahlawat A, Kumar N, Kumar R, Sandhu H, Singh I P, Singh S, Sjöstedt A, Garg P. J. Chem. Inf. Model., 2020, 60: 5781.
CrossRef Google scholar
[75]
Wu P, Chauelret R, Hu X Q, Yang W T. J. Chem. Theory. Comput., 2013, 9: 5.
[76]
Lu T, Chen F. J. Comput. Chem., 2012, 33: 580.
CrossRef Google scholar
[77]
Shan J W, Pan X L, Wang X Y, Xiao X D, Ji C G. J. Chem. Inf. Model., 2020, 60: 5900.
CrossRef Google scholar
[78]
Yang H T, Xie W Q, Xue X Y, Yang K L, Ma J, Liang W X, Zhao Q, Zhou Z, Pei D Q, Ziebuhr J, Hilgenfeld R, Yuen K Y, Wong L, Gao G X, Chen S J, Chen Z, Ma D W, Bartlam M, Rao Z H. PLoS Biol., 2005, 3: e324.
CrossRef Google scholar

29

Accesses

0

Citations

Detail

Sections
Recommended

/