Advancements and Prospects in Continuous Wave Time-resolved Electron Paramagnetic Resonance

Shixue Zhang , Shengqi Zhou , Hao Wu , Xingwei Guo

Chemical Research in Chinese Universities ›› : 1 -8.

PDF
Chemical Research in Chinese Universities ›› : 1 -8. DOI: 10.1007/s40242-024-4144-z
Review

Advancements and Prospects in Continuous Wave Time-resolved Electron Paramagnetic Resonance

Author information +
History +
PDF

Abstract

This brief review highlights the techniques and diverse applications of time-resolved electron paramagnetic resonance (TREPR) spectroscopy, underscoring its essential role in elucidating the structures, spin dynamics, and reactivities of open-shell systems. Furthermore, we discuss the limitations of traditional TREPR methodologies, particularly their challenges in directly observing reactive radical intermediates under real-world reaction conditions. Lastly, we present the latest advancements in TREPR technology developed in our laboratory, specifically ultrawide single-sideband phase-sensitive detection (U-PSD) TREPR, highlighting its significant impact and tremendous potential in advancing free radical chemistry research. We envision promising future applications of TREPR and its pivotal role in enhancing our understanding of mechanisms involved in complex radical processes and photocatalysis.

Keywords

Time-resolved electron paramagnetic resonance (TREPR) / Ultrawide single-sideband phase-sensitive detection (U-PSD) / Spin chemistry / Radical chemistry / Photochemistry

Cite this article

Download citation ▾
Shixue Zhang, Shengqi Zhou, Hao Wu, Xingwei Guo. Advancements and Prospects in Continuous Wave Time-resolved Electron Paramagnetic Resonance. Chemical Research in Chinese Universities 1-8 DOI:10.1007/s40242-024-4144-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu X, Yang D, Liu Z, Wang Y, Liu Y, Wang S, Wang P, Cong H, Chen Y-H, Lu L, Qi X, Yi H, Lei A. J. Am. Chem. Soc., 2023, 145: 3175.

[2]

Liu C, Han G, Hu B, Geng F, Liu M, Dai S, Yang Y. Environ. Sci. Technol., 2021, 55: 16716.

[3]

Qin Z, Wang Z, Kong F, Su J, Huang Z, Zhao P, Chen S, Zhang Q, Shi F, Du J. Nat. Commun., 2023, 14: 6278.

[4]

Kovarik S, Robles R, Schlitz R, Seifert T S, Lorente N, Gambardella P, Stepanow S. Nano Lett., 2022, 22: 4176.

[5]

Lai S-Q, Wei B-Y, Wang J-W, Yu W, Han B. Angew. Chem. Int. Ed., 2021, 60: 21997.

[6]

Fagan W P, Villamena F A, Zweier J L, Weavers L K. Environ. Sci. Technol., 2022, 56: 3729.

[7]

Aschendorf C J, Degbevi M, Prather K V, Tsui E Y. Chem. Sci., 2023, 14: 13080.

[8]

Giorio C, Campbell S J, Bruschi M, Tampieri F, Barbon A, Toffoletti A, Tapparo A, Paijens C, Wedlake A J, Grice P, Howe D J, Kalbere M, Information V A. J. Am. Chem. Soc., 2017, 139: 3999.

[9]

Hamilton E J Jr., Fischer H. J. Phys. Chem., 1973, 77: 722.

[10]

Hori H, Ikeda-Saito M, Yonetani T. Nature, 1980, 288: 501.

[11]

Georgieva E R, Roy A S, Grigoryant V M, Borbat P P, Earle K A, Scholes C P, Freed J H. J. Magn. Reson., 2012, 216: 69.

[12]

Schmidt T, Wang D, Jeon J, Schwieters C D, Clore G M. J. Am. Chem. Soc., 2022, 144: 12043.

[13]

Nguyen R C, Davis I, Dasgupta M, Wang Y, Simon P S, Butryn A, Makita H, Bogacz I, Dornevil K, Aller P, Bhowmick A, Chatterjee R, Kim I-S, Zhou T, Mendez D, Paley D W, Fuller F, Mori R A, Batyuk A, Sauter N K, Brewster A S, Orville A M, Yachandra V K, Yano J, Kern J F, Liu A. J. Am. Chem. Soc., 2023, 145: 25120.

[14]

Zhang S, Zhou S, Qi J, Jiao L, Guo X. Rev. Sci. Instrum., 2023, 94: 084101.

[15]

Qi J Q, Suo W, Liu J, Sun S, Jiao L, Guo X. J. Am. Chem. Soc., 2024, 146: 7140.

[16]

Zavoisky E K. J. Phys., 1945, 9: 211.

[17]

Hutchison C A Jr., Mangum B W. J. Chem. Phys., 1958, 29: 952.

[18]

Fessenden R W, Schuler R H. J. Chem. Phys., 1963, 39: 2147.

[19]

Laible P D, Chynwat V, Thurnauer M C, Schiffer M, Hanson D K, Frank H A. Biophys J., 1998, 74: 2623.

[20]

Weber S. eMagRes, 2017, 6: 255.

[21]

Meichsner S L, Kutin Y, Kasanmascheff M. Angew. Chem. Int. Ed., 2021, 60: 19155.

[22]

Anderson J S, Cutsail G E, Rittle J, Connor B A, Gunderson W A, Zhang L, Hoffman B M, Peters J C. J. Am. Chem. Soc., 2015, 137: 7803.

[23]

Martinez C G, Jockusch S, Ruzzi M, Sartori E, Moscatelli A, Turro N J. J. Phys. Chem. A, 2005, 109: 10216.

[24]

Takahashi H, Hirano H, Nomura K, Hagiwara K, Kawai A. Chem. Phys. Lett., 2021, 763: 138205.

[25]

Liu Y, Shi B, Liu Z, Gao R, Huang C, Alhumade H, Wang S, Qi X, Lei A. J. Am. Chem. Soc., 2021, 143: 20863.

[26]

Matsuoka H, Retegan M, Schmitt L, Höger S, Neese F, Schiemann O. J. Am. Chem. Soc., 2017, 139: 12968.

[27]

Palmer J R, Williams M L, Young R M, Peinkofer K R, Phelan B T, Krzyaniak M D, Wasielewski M R. J. Am. Chem. Soc., 2024, 146: 1089.

[28]

Wandt J, Jakes P, Granwehr J, Eichel R-A, Gasteiger H A. MaterialsToday, 2018, 21: 231.

[29]

Gränz M, Erlenbach N, Spindler P, Gophane D B, Stelzl L S, Sigurdsson S T, Prisner T F. Angew. Chem. Int. Ed., 2018, 57: 10540.

[30]

Kisgeropoulos E C, Gan Y J, Greer S M, Hazel J M, Shafaat H S. J. Am. Chem. Soc., 2022, 144: 11991.

[31]

Forbes M D E, Jarocha L E, Sim S Y, Tarasov V F. Adv. Phys. Org. Chem., 2013, 47: 1.

[32]

Sneha M, Thornton G L, Lewis-Borrell L, Ryder A S H, Espley S G, Clark I P, Cresswell A J, Grayson M N, Orr-Ewing A J. ACS Catal., 2023, 13: 8004.

[33]

Huang Z, Yang Y, Mu J, Li G, Han J, Ren P, Zhang J, Luo N, Han K L, Wang F. Chinese J. Catal., 2023, 45: 120.

[34]

Beel R, Kobialka S, Schmidt M L, Engeser M. Chem. Commun., 2011, 47: 3293.

[35]

Ochmann M, Ahnen I V, Cordones A A, Hussain A, Lee J H, Hong K, Adamczyk K, Vendrell O, Kim T K, Schoenlein R W, Huse N. J. Am. Chem. Soc., 2017, 139: 4797.

[36]

Bargon J, Fischer H, Johnsen U Z. Naturforsch A, 1967, 22: 1551.

[37]

Olshansky J H, Harvey S M, Pennel M L, Krzyaniak M D, Schaller R D, Wasielewski M R. J. Am. Chem. Soc., 2020, 142: 13590.

[38]

Hayashi H, Sakaguchi Y. J. Photoch. Photobio. C, 2005, 6: 25.

[39]

Murai H, Fu Z. Mil. Phys., 2019, 117: 2732.

[40]

Bagryanskaya E, Fedin M, Forbes M D E. J. Phys. Chem. A, 2005, 109: 5064.

[41]

Cheney D J, Wedge C J. J. Magn. Reson., 2022, 337: 107170.

[42]

Tero-Kubota S, Katsukib A, Kobori Y. J. Photoch. Photobio. C, 2001, 2: 17.

[43]

Brugh A M, Forbes M D E. Chem. Sci., 2020, 11: 6268.

[44]

Forbes M D E. Photochemistry and Photobiology, 1997, 65: 73.

[45]

Tait C E, Krzyaniak M D, Stoll S. J. Magn. Reson., 2023, 349: 107410.

[46]

Dance Z E X, Mickley S M, Wilson T M, Ricks A B, Scott A M, Ratner M A, Wasielewski M R. J. Phys. Chem. A, 2008, 112: 4194.

[47]

Tait C E, Neuhaus P, Anderson H L, Timmel C R. J. Am. Chem. Soc., 2015, 137: 6670.

[48]

Hochstoeger T, Said T A, Maestre D, Walter F, Vilceanu A, Pedron M, Cushion T D, Snider W, Nimpf S, Nordmann G C, Landler L, Edelman N, Kruppa L, Dürnberger G, Mechtler K, Schuechner S, Ogris E, Malkemper E P, Weber S, Schleicher E, Keays D A. Sci. Adv., 2020, 6: eabb9110.

[49]

Smaller B, Remko J R, Avery E C. J. Chem. Phys., 1968, 48: 5174.

[50]

Smith G E, Blankenship R E, Klein M P. Rev. Sci. Instrum., 1977, 48: 282.

[51]

de Jager P A, van Wijk F G H. Rev. Sci. Instrum., 1987, 58: 735.

[52]

Zhang S, Cheng L, Qi J-Q, Jia Z, Zhang L, Jiao L, Guo X, Luo S. CCS Chem., 2024.

[53]

Xu S, Zhang H, Xu J, Suo W, Lu C-S, Tu D, Guo X, Poater J, Sola M, Yan H. J. Am. Chem. Soc., 2024, 146: 7791.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/